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In this paper we solve the general case of the cohomological 
relative index problem for foliations of non-compact manifolds. 
In particular, we significantly generalize the groundbreaking 
results of Gromov and Lawson, [20], to Dirac operators 
defined along the leaves of foliations of non-compact complete 
Riemannian manifolds, by involving all the terms of the 
Connes-Chern character, especially the higher order terms in 
Haefliger cohomology. The zero-th order term corresponding 
to holonomy invariant measures was carried out in [8] and 
becomes a special case of our main results here. In particular, 
for two leafwise Dirac operators on two foliated manifolds 
which agree near infinity, we define a relative topological 
index and the Connes-Chern character of a relative analytic 
index, both being in relative Haefliger cohomology. We show 
that these are equal. This invariant can be paired with closed 
holonomy invariant currents (which agree near infinity) to 
produce higher relative scalar invariants. When we relate 
these invariants to the leafwise index bundles, we restrict 
to Riemannian foliations on manifolds of sub-exponential 
growth. This allows us to prove a higher relative index bundle 
theorem, extending the classical index bundle theorem of [5]. 
Finally, we construct examples of foliations and use these 
invariants to prove that their spaces of leafwise positive 
scalar curvature metrics have infinitely many path-connected 
components, completely new results which are not available 
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from [8]. In particular, these results confirm the well-known 
idea that important geometric information of foliations is 
embodied in the higher terms of the ˆ︁A genus.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

In this paper we continue our program of extending the groundbreaking relative index 
theorems of Gromov-Lawson, especially Theorem 4.18, [20], to Dirac operators defined 
along the leaves of foliations of non-compact complete Riemannian manifolds. Their 
results have played a fundamental role in the development and understanding of the 
existence and non-existence of metrics with positive scalar curvature (PSC), as well as 
the structure of spaces of such metrics. It is an essential tool for the extension of results 
for compact manifolds to non-compact manifolds.

In [8], we extended the Gromov-Lawson theorem to foliations admitting invariant 
transverse measures, and crucial requirements for the applications were that the foliation 
admits a holonomy invariant measure, and that the measured ˆ︁A genus of the foliation 
be non-zero. In this paper, we dispense with both these requirements and completely 
solve the general case. We obtain results for all the terms of the Atiyah-Singer charac
teristic forms associated with the Dirac operators, especially the higher order terms of 
the Connes-Chern character of the relative analytic index, as well as the higher order 
terms of the Connes-Chern characters of their ``index bundles''. We also construct a large 
collection of spin foliations, with trivial zero-th order Haefliger ˆ︁A genus, whose spaces 
of leafwise PSC metrics have infinitely many path connected components. In particular, 
these results confirm the idea that the higher order terms of the ˆ︁A genus carry important 
geometric information.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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As in [8], our work is in the spirit of the transition from the Atiyah-Singer index 
theorem, [2], to Connes’ index theorem for foliations, [13--15]. In order to overcome 
the problems of dealing with non-compact manifolds, we assume that our objects have 
bounded geometry. Our higher relative index theorem then provides the expected for
mula in an appropriate relative Haefliger cohomology for pairs of foliations which are 
isomorphic near infinity, equating the higher relative analytical index constructed out 
of parametrics with the higher relative A-hat forms. When the foliations are top di
mensional, we recover the Gromov-Lawson theory [20,27]. When the foliated manifolds 
are compact (without boundary), we recover the cohomological version of the Connes
Skandalis index theorem [15], as developed in [4] using Haefliger cohomology. When the 
foliations are not top-dimensional, any pair of Haefliger transverse currents which are 
compatible near infinity lead to scalar higher relative index formulas. We thus recover 
the results of our previous paper [8] by pairing our higher relative index formula with a 
compatible pair of holonomy invariant transverse measures.

As is well known and already observed for closed foliated manifolds, see for instance 
[5,6,25], despite the top-dimensional case, further conditions are required to relate the 
higher analytic index of leafwise Dirac operators to their spectral index, say the Connes
Chern characters of the leafwise projections to their kernels, the so-called index bundle. 
The examples in [6] show that such restrictions are necessary. Assuming, as in [5], that 
the spectral projections of the leafwise Dirac operators are sufficiently sparse near zero 
and that the foliations are Riemannian, we prove our next higher index theorem which 
now involves the relative spectral index. This theorem holds only in the absolute Hae
fliger cohomologies since the pair of index bundles is in general not compatible near 
infinity. This incompatibility can prevent the pairing of the index bundles with compat
ible near infinity Haefliger currents from being well defined. Finally, we show that when 
the ambient manifolds have sub-exponential growth, such pairings are miraculously well 
defined as soon as the Dirac operators are invertible near infinity, and they equal the 
pairing with the higher relative A-hat forms. The invertibility near infinity is the usual 
Gromov-Lawson condition involving the zero-th order term of the Bochner formula. It 
occurs for instance when the foliations are spin with leafwise PSC near infinity, compare 
with [20].

Notational details are given in the next section.
Denote by (M,F ) a foliated manifold where M is a non-compact complete Riemannian 

manifold and F is an oriented foliation (with the induced metric) of M . We assume 
that both M and F are of bounded geometry and that the holonomy groupoid of F
is Hausdorff. We will sometimes assume that F is Riemannian, and when we do, we 
will explicitly point it out in the text. The general case will be addressed in [9]. We 
assume that we have a Clifford bundle EM → M over the Clifford algebra of the co
tangent bundle to F , along with a Hermitian connection ∇F,E compatible with Clifford 
multiplication. This determines a leafwise generalized Dirac operator, denoted DF . We 
assume that we have a second foliated manifold (M ′, F ′) with the same structures. We 
further assume that there are compact subspaces 𝒦M = M ∖ VM and 𝒦′

M ′ = M ′
∖ V ′

M ′
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so that the situations on VM and V ′
M ′ are identical via a smooth isometry ϕ. These are 

the usual Gromov-Lawson relative data. Note that in our case, the ``bad set'' restricted 
to a leaf need not be compact as in the Gromov-Lawson case. Only the global aggregate 
of all such leafwise subsets needs to be compact as a subset of M .

In [8], we worked on the ambient manifolds M and M ′. Here we work on their holon
omy groupoids 𝒢 and 𝒢′, with their canonical foliations Fs and F ′

s, as we did in [5]. We 
lift everything to 𝒢 using the range map r : 𝒢 → M , which is a covering map from the 
leaves of Fs to those of F , and similarly for M ′. In particular, we have the 𝒢 invariant 
leafwise Dirac operator D for the foliation Fs, and similarly D′ for F ′

s.
Recall that for a good cover 𝒰 = {(Ui, Ti)} of M , [24], by foliation charts Ui with 

local complete transversals Ti ⊂ Ui, the Haefliger forms associated to F are the bounded 
smooth differential forms on ⨿ Ti which have compact support in each Ti, modulo 
forms minus their holonomy images. The (absolute) Haefliger cohomology of F , denoted 
H∗

c (M/F ), is then the associated de Rham cohomology, and is independent of the choice 
of good cover, [21]. Also recall that there is an integration over the leaves map from 

forms on M to Haefliger forms, denoted 
∫︂
F

, which induces a map on cohomology. For 

the foliation given by the fibers of a bundle M → B, the Haefliger cohomology reduces 
to the cohomology of the base and 

∫︂
F

is the classical integration over the fibers map. See 

again [21] for more details.
The receptacle for our relative index formulas will be a relative version of Haefliger 

cohomology that we denote by H∗
c (M/F,M ′/F ′;ϕ). This is the cohomology of pairs of 

Haefliger forms which agree near infinity (that is, on Ti far enough away from 𝒦M and 
similarly for the T ′

i ), again modulo pairs of forms minus their holonomy images which 
also agree near infinity.

Denote by AS(DF ) the Atiyah-Singer characteristic differential form, associated with 
the above ϕ-compatible data, for DF , and similarly for DF ′ . These differential forms 
agree near infinity on M and M ′. The relative A-hat genus of the compatible pair 
(D,D′), alternatively called the relative topological index, is

Indt(D,D′) = 

⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(D′
F ′))

⎤⎦ ∈ H∗
c (M/F,M ′/F ′;ϕ).

Using parametrics, we define a relative analytical index class Inda(D,D′) in the appro
priate K-theory group, and its Connes-Chern character,

ch(Inda(D,D′)) ∈ H∗
c (M/F,M ′/F ′;ϕ).

Our first result is
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Theorem 4.2. For the (M,F ), (M ′, F ′), D and D′ as above,

ch(Inda(D,D′)) = Indt(D,D′) in H∗
c (M/F,M ′/F ′;ϕ).

So, pairing with any compatible near infinity pair (C,C ′) of closed Haefliger currents 
yields a (higher) scalar relative index formula. Such pairings will be denoted ⟨·, ·⟩, e.g. 
⟨ch(Inda(D,D′)), (C,C ′)⟩.

An important application of this theorem is to pairs of ``reflective'' foliations, which we 
consider in Section 6. They can be ``cut and pasted'' to get a compact foliated manifold ˆ︂M , with the foliation ˆ︁F and operator ˆ︁D ˆ︁F . Given C and C ′ as above, denote by ˆ︁C the 
current they determine on ˆ︂M . Then we have the following extension of the Gromov
Lawson Relative Index Theorem, see [20], which is most useful in Section 7, where we 
construct our examples.

Theorem 6.7. Suppose that F (and so also F ′) is reflective. Then

⟨ch(Inda(D,D′), (C,C ′)⟩ = ⟨ch(Inda( ˆ︁D ˆ︁F )), ˆ︁C⟩.
The RHS of this index formula can then be computed using the classical higher co

homological index theorem for foliations of closed manifolds [17,4]. For top dimensional 
foliations, say when TF = TM and TF ′ = TM ′, the previous two theorems reduce to 
the classical Gromov-Lawson relative index theorems.

Despite the top dimensional case, it is well known that the higher index is not easily 
related with the so-called index bundle, i.e. the Chern character of the ``kernel minus 
cokernel superbundle''. Constraints on the spectral distributions, as well as on the geom
etry near infinity are necessary, see for instance [6]. Denote by P0 the leafwise spectral 
projection to the kernel of D2. In general P0 is not transversely smooth (although it is 
always leafwise smooth), and if not, we cannot even define its Connes-Chern character in 
our Haefliger cohomology without perturbing the operator. There are though interesting 
classes of foliations and leafwise Dirac-type operators whose kernel superbundle P0 is 
transversely smooth, and in this case, we get a well defined spectral index class

ch(P0) ∈ H∗
c (M/F ),

and similarly for P ′
0, see [5].

Denote by P(0,ϵ) the leafwise spectral projection for D2 for the interval (0, ϵ). The 
Novikov-Shubin invariants NS(D) of D are a measure of the density of the image of 
P(0,ϵ). The larger NS(D) is, the sparser the image of P(0,ϵ) is as ϵ→ 0.

We also have the natural map (π × π′) : H∗
c (M/F,M ′/F ′;ϕ) → H∗

c (M/F ) ×
H∗

c (M ′/F ′), and with it the Riemannian Foliation Relative Index Bundle Theorem.

Theorem 4.3. Fix 0 ≤ ℓ ≤ q/2, where q is the codimension of F and F ′. Assume that:
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• the foliations F and F ′ are Riemannian;
• the leafwise operators P0, P ′

0, P(0,ϵ) and P ′
(0,ϵ) (for ϵ sufficiently small) are trans

versely smooth;
• NS(D) and NS(D′) are greater than ℓ.

Then, for 0 ≤ k ≤ ℓ, we have in H2k
c (M/F )×H2k

c (M ′/F ′)

(π × π′) chk(Inda(D,D′)) = (chk(Inda(D)), chk(Inda(D′))) = (chk(P0), chk(P ′
0)).

For Riemannian foliations, important examples of compatible near infinity pairs of 
closed Haefliger currents are given by closed bounded holonomy invariant transverse 
differential forms ω on M and ω′ on M ′ which agree near infinity. These determine 
closed bounded Haefliger forms on T , denoted ωT and ω′

T ′ which agree near infinity. 
Denote by dx the global volume form on M .

We then have the Higher Relative Index Pairing Theorem.

Theorem 4.6. In addition to the assumptions in Theorem 4.3, assume that for ϵ suffi
ciently small, 

∫︂
M

tr(P[0,ϵ))dx <∞ and 
∫︂
M ′

tr(P ′
[0,ϵ))dx <∞, and that M , and so also M ′, 

has sub-exponential growth. Then, for any ω ∈ C∞(∧q−2kν∗) and ω′ ∈ C∞(∧q−2kν′∗)
(0 ≤ k ≤ ℓ) as above,

∫︂
T

ch(P0) ∧ ωT and 
∫︂
T ′

ch(P ′
0) ∧ ω′

T ′ are well defined complex numbers,

and

∫︂
T

ch(P0) ∧ ωT − 
∫︂
T ′

ch(P ′
0) ∧ ω′

T ′ = ⟨
⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(D′
F ′)

⎤⎦ , [ωT , ω
′
T ′ ]⟩.

In Section 6, we show that the finite integral assumptions in Theorem 4.6 are satisfied 
when DF (and hence also DF ′) is invertible near infinity, i.e. when the zeroth order 
differential operator ℛE

F in the associated Bochner Identity

D2
F = ∇∗∇+ℛE

F ,

is uniformly positive near infinity on M . The sub-exponential growth condition can be 
extended to exponential growth provided it is not too robust. See Remark 5.7.

For a single foliated manifold with a pair of compatible near infinity leafwise Dirac 
operators, we have the following generalization of a classical result of Gromov-Lawson 
[20], compare with Theorem 6.5 in [27].
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Theorem 6.5. Suppose that E and E′ are two Clifford bundles over the foliated manifold 
(M,F ), which are isomorphic off the compact subset 𝒦M , with associated twisted Dirac 
operators D and D′. Let ω be a bounded closed holonomy invariant transverse form (or 
Haefliger current) of degree ℓ ≤ q. Suppose that

• M has sub-exponential growth, and F is Riemannian;
• the leafwise operators P0, P ′

0, P(0,ϵ) and P ′
(0,ϵ) (for ϵ sufficiently small) are trans

versely smooth;
• min(NS(D), NS(D′)) is greater than ℓ;
• ℛE

F , and hence also ℛE′
F , is uniformly positive near infinity.

Then, since ch(E) = ch(E′) off 𝒦M ,∫︂
𝒦M

(AS(DF )(ch(E)− ch(E′)) ∧ ω = 
∫︂
T

(ch(P0) − ch(P ′
0)) ∧ ωT .

In the reflective case, again more constraints are necessary to obtain the link with the 
index bundle, and we have the following.

Theorem 6.8. Suppose that F (so also F ′) is reflective. Suppose furthermore that ˆ︁F
is Riemannian and that ˆ︁P0 and ˆ︁P(0,ϵ) are transversely smooth and the Novikov-Shubin 
invariants of ˆ︁D ˆ︁F are greater than ℓ, for some 0 ≤ ℓ ≤ q/2. Then for any 2ℓ homogeneous 
ϕ-compatible (ω, ω′) as above,

⟨ch(Inda(D,D′)), [ωT , ω
′
T ′ ]⟩ = ⟨ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩.

Moreover, if we impose the assumptions of Theorem 4.6, then

⟨(ch(P0), ch(P ′
0)), (ωT , ω

′
T ′)⟩ = ⟨ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩.

In Section 7, we consider foliations which admit positive scalar curvature (PSC) leaf
wise metrics. Given such a foliation, we associate to any pair (g0, g1) of such metrics, an 
invariant living in Haefliger cohomology, which provides an obstruction for the leafwise 
path connected equivalence of g0 and g1. This precisely generalizes the classical Gromov
Lawson invariant. Finally, we construct a large collection of spin foliations whose space 
of leafwise PSC metrics has infinitely many path connected components.

Acknowledgments. MTB thanks the French National Research Agency for support via 
the project ANR-14-CE25-0012-01 (SINGSTAR). JLH thanks the Simons Foundation for 
a Mathematics and Physical Sciences-Collaboration Grant for Mathematicians, Award 
Number 632868.

The authors would like to express their special thanks to the referee whose careful 
reading and cogent remarks were very helpful.
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2. The setup

In order that this paper be self contained, we begin this section recalling some material 
from [8].

Denote by M a smooth non-compact complete Riemannian manifold of dimension n, 
and by F an oriented foliation (with the induced metric) of M of dimension p, (until 
further notice, we assume that p is even), and codimension q = n− p. The tangent and 
cotangent bundles of M and F are denoted TM, T ∗M,TF and T ∗F . The normal and 
dual normal bundles of F are denoted ν and ν∗. A leaf of F is denoted by L. At times, 
we will assume that F is Riemannian, that is the metric on M , when restricted to ν
is bundle like, so the holonomy maps of ν and ν∗ are isometries. We will consider the 
general case in [9].

We assume that both M and F are of bounded geometry, that is, the injectivity 
radius on M and on all the leaves of F is bounded below, and the curvatures and all of 
their covariant derivatives on M and on all the leaves of F are bounded (the bound may 
depend on the order of the derivative).

Let 𝒰 be a good cover of M by foliation charts as defined in [24]. In particular, denote 
by Dp(r) = {x ∈ Rp, ||x|| < r}, and similarly for Dq(r). An open uniformly locally finite 
cover {(Ui, ψi)} of M by foliation coordinate charts ψi : Ui → Dp(1)× Dq(1) ⊂ Rn is a 
good cover for F provided that

1. For each y ∈ Dq(1), Py = ψ−1
i (Dp(1)× {y}) is contained in a leaf of F . Py is called 

a plaque of F .
2. If Ui ∩ Uj ̸= ∅, then it is contractible, and if U i ∩ U j ̸= ∅, then Ui ∩ Uj ̸= ∅.
3. Each ψi extends to a diffeomorphism ψi : Vi → Dp(2) × Dq(2), so that the cover 
{(Vi, ψi)} satisfies (1) and (2), with Dp(1) and Dq(1) replaced by Dp(2) and Dq(2).

4. Each plaque of Vi intersects at most one plaque of Vj and a plaque of Ui intersects 
a plaque of Uj if and only if the corresponding plaques of Vi and Vj intersect.

5. There are global positive upper and lower bounds on the norms of each of the deriva
tives of the ψi.

Bounded geometry foliated manifolds always admit good covers. In particular, we may 
assume that the Vi have a uniform bound on their diameters significantly less than the 
bound on the injectivity radii.

For each Ui ∈ 𝒰 , let Ti ⊂ Ui be a local complete transversal (e.g. Ti = ψ−1
i ({0} ×

Dq(1))) and set T =
⋃︁

Ti. We may assume that the closures of the Ti are disjoint. Given 
(Ui, Ti) and (Uj , Tj), suppose that γijℓ : [0, 1] → M is a path whose image is contained 
in a leaf with γijℓ(0) ∈ Ti and γijℓ(1) ∈ Tj . Then γijℓ induces a local diffeomorphism 
hγijℓ

: Ti → Tj , with domain Domγijℓ
and range Ranγijℓ

, which are assumed to be 
maximal. Note that the domains of the hijℓ cover T , as do the ranges. The space 𝒜k

c (T )
consists of all smooth k-forms on T which are C∞ bounded and have compact support 
in each Ti. The Haefliger k-forms for F , denoted 𝒜k

c (M/F ), consists of elements in the 
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quotient of 𝒜k
c (T ) by the closure of the vector subspace 𝒲 generated by the elements of 

the form αijℓ−h∗
γijℓ

αijℓ where αijℓ ∈ 𝒜k
c (T ) has support contained in Ranγijℓ

. We need 
to take care as to what this means. Members of 𝒲 consist of possibly infinite sums of 
elements of the form αijℓ−h∗

γijℓ
αijℓ, with the restriction that each i and each j appears 

at most a finite number of times. The projection map is denoted

[·] : 𝒜∗
c(T ) → 𝒜∗

c(M/F ).

Denote the exterior derivative by dT : 𝒜k
c (T ) → 𝒜k+1

c (T ), which induces dH :
𝒜k

c (M/F ) → 𝒜k+1
c (M/F ). Note that 𝒜k

c (M/F ) and dH are independent of the choice 
of cover 𝒰 . The cohomology H∗

c (M/F ) of the complex {𝒜∗
c(M/F ), dH} is the Haefliger 

cohomology of F .
Denote by 𝒜∗

u(M) the space of differential forms on M which are smooth and C∞

bounded, and denote its exterior derivative by dM and its cohomology by H∗
u(M ;R). 

As the bundle TF is oriented, there is a continuous open surjective linear map, called 
integration over F , ∫︂

F

: 𝒜p+k
u (M) → 𝒜k

c (T ),

which commutes with the exterior derivatives. This map is given by choosing a partition 

of unity {φi} subordinate to the cover 𝒰 , and setting 
∫︂
F

ω to be the class of 
∑︂
i 

∫︂
Ui

φiω. 

It is a standard result, [21], that the image of this differential form 
[︂ ∫︂
F

ω
]︂
∈ 𝒜k

c (M/F )

is independent of the partition of unity and of the cover 𝒰 . As 
∫︂
F

commutes with dM

and dH , it induces the map 
∫︂
F

: Hp+k
u (M ;R) → Hk

c (M/F ).

Note that 
∫︂
Ui

is integration over the fibers of the projection Ui → Ti, and that each 

integration ω →
∫︂
Ui

φiω is essentially integration over a compact fibration, so 
∫︂
F

satisfies 

the Dominated Convergence Theorem on each Ui ∈ 𝒰 .
The holonomy groupoid 𝒢 of F consists of equivalence classes of paths γ : [0, 1] →M

such that the image of γ is contained in a leaf of F . Two such paths γ1 and γ2 are 
equivalent if γ1(0) = γ2(0), γ1(1) = γ2(1), and the holonomy germ along them is the 
same. Two classes may be composed if the first ends where the second begins, and the 
composition is just the juxtaposition of the two paths. This makes 𝒢 a groupoid. The 
space 𝒢(0) of units of 𝒢 consists of the equivalence classes of the constant paths, and we 
identify 𝒢(0) with M .
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The basic open sets defining the (in general non-Hausdorff) 2p+q dimensional manifold 
structure of 𝒢 are given as follows. Given Ui, Uj ∈ 𝒰 and a leafwise path γijℓ starting in 
Ui and ending in Uj , define the graph chart Ui×γijℓ

Uj to be the set of equivalence classes 
of leafwise paths starting in Ui and ending in Uj which are homotopic to γijℓ through a 
homotopy of leafwise paths whose end points remain in Ui and Uj respectively. It is easy 
to see, using the holonomy map hγijℓ

: Ti → Tj that Ui×γijℓ
Uj ≃ Dp(1)×Dp(1)×Dq(1).

𝒢 has the natural maps r, s : 𝒢 →M , with s([γ]) = γ(0) and r([γ]) = γ(1). It also has 
two natural foliations, Fs and Fr, whose leaves are the fibers of s and r. We will primarily 
use Fs, whose leaves are denoted ˜︁Lx = s−1(x), for x ∈ M . Note that r : ˜︁Lx → L is the 
holonomy covering map. We will assume that 𝒢 is Hausdorff, which is automatic for 
Riemannian foliations.

The smooth sections of a bundle E are denoted by C∞(E), and those with compact 
support by C∞

c (E). We assume that any connection or any metric on E, and all their 
derivatives, are bounded. See [30] for material about bounded geometry bundles and 
their properties.

For a real or complex bundle EM → M , the external tensor product bundle EM ⊠
E∗

M →M ×M can be pulled back under (s, r) to a smooth bundle denoted E⊠E∗ over 
𝒢. We denote the smooth, bounded sections k(γ) with compact support of the restriction 
of this bundle to the subset Ui ×γijℓ

Uj ⊂ 𝒢 by C∞
c (Ui ×γijℓ

Uj , E ⊠ E∗). We extend 
them to all of 𝒢 by setting k(γ) = 0 if γ / ∈ Ui ×γijℓ

Uj .

Definition 2.1. [7] The algebra C∞
u (E ⊠ E∗) consists of smooth sections k of E ⊠ E∗, 

called kernels, such that k is a (possibly infinite) sum k =
∑︁

ijℓ kijℓ, with each kijℓ ∈
C∞

c (Ui ×γijℓ
Uj , E ⊠ E∗). For each k, we require that there is a bound on the leafwise 

length of its γijℓ. We further require that for each k, each of its derivatives in the local 
coordinates given by the good cover is bounded, with the bound possibly depending on 
the particular derivative.

The proof of Lemma 2.3 of [5] shows that this is indeed an algebra. Using the K-theory 
of such a foliated analog of the Roe algebra as a receptacle for indices of leafwise Dirac 
operators on open foliated manifolds is not a completely new idea. See for instance [32].

Each k ∈ C∞
u (E⊠E∗) defines a 𝒢-invariant leafwise smoothing operator on C∞

c (E) in 
the sense of [13], which is transversely smooth, and it has finite propagation due to the 
limit on the leafwise lengths of its γijℓ. See [30] for the definition of bounded geometry 
smoothing operators, as well as [28] for the groupoid version. To see this, use the leafwise 
distance function dx(γ, ˆ︁γ) on ˜︁Lx. This is defined as the infimum over the leafwise length 
𝔩(γˆ︁γ−1) of all paths in the class of γˆ︁γ−1 ∈ 𝒢. For any bounded geometry foliation with 
Hausdorff holonomy groupoid, the sets Ui ×γijℓ

Uj have the property that there is a 
universal constant (namely the bound C on the diameters of all the plaques in all the 
Ui ×γijℓ

Uj), so that for all γ ∈ Ui ×γijℓ
Uj , we have 𝔩(γ) ≤ 𝔩(γijℓ) + 2C. Next, suppose 

that kijℓ ∈ C∞
c (Ui ×γijℓ

Uj , E ⊠ E∗), and σ ∈ C∞
c (E). Then,
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kijℓ(σ)(γ) = 
∫︂

˜︁Ls(γ)

kijℓ(γˆ︁γ−1)σ(ˆ︁γ)dˆ︁γ.
Now, kijℓ(γˆ︁γ−1) = 0 unless γˆ︁γ−1 ∈ Ui ×γijℓ

Uj , that is only if 𝔩(γˆ︁γ−1) = ds(γ)(γ, ˆ︁γ) ≤
𝔩(γijℓ) + 2C, the very definition of finite propagation. The restrictions imposed on each 
kijℓ imply that each Ui and each Uj appears at most a bounded number of times, so the 
sum converges locally uniformly, in particular pointwise. These restrictions on k insure 
that it also has bounded propagation.

Denote by DF a generalized leafwise Dirac operator for the even dimensional foliation 
F . It is defined as follows. Let EM be a complex vector bundle over M with Hermitian 
metric and connection, which is of bounded geometry. Assume that the tangent bundle 
TF is spin with a fixed spin structure. Because F is even dimensional, the bundle of 
spinors along its leaves, denoted 𝒮F splits as 𝒮F = 𝒮+

F ⊕ 𝒮−
F . Denote by ∇F the Levi

Civita connection on each leaf L of F . ∇F induces a connection ∇F on 𝒮F |L, and we 
denote by ∇F,E the tensor product connection on 𝒮F ⊗ EM |L. These data determine a 
smooth family DF = {DL} of leafwise Dirac operators, where DL acts on sections of 
𝒮F ⊗EM |L as follows. Let X1, . . . , Xp be a local oriented orthonormal basis of TL, and 
set

DL = 
p ∑︂

i=1 
ρ(Xi)∇F,E

Xi

where ρ(Xi) is the Clifford action of Xi on the bundle 𝒮F ⊗ EM |L. Then DL does 
not depend on the choice of the Xi, and it is an odd operator for the Z2 grading of 
𝒮F ⊗EM = (𝒮+

F ⊗EM )⊕ (𝒮−
F ⊗EM ). Thus DF : C∞

c (𝒮±
F ⊗EM ) → C∞

c (𝒮∓
F ⊗EM ), and 

D2
F : C∞

c (𝒮±
F ⊗ EM ) → C∞

c (𝒮±
F ⊗ EM ). For more on the generalized Dirac operators 

that we are using here, see [27].
Given a leafwise operator A on 𝒮⊗E⊗∧ν∗s , denote its leafwise Schwartz kernel by kA. 

Then, depending on the context and under appropriate assumptions on kA, the Haefliger 
traces, Tr(A) and 𝔗𝔯(A), of A are defined to be,

Tr(A) =
∫︂
F

tr(kA(x, x))dxF ∈ 𝒜∗
c(M/F ) and 

𝔗𝔯(A) =

⎡⎣∫︂
F

tr(kA(x, x))dxF

⎤⎦ ∈ H∗
c (M/F ),

where dxF is the leafwise volume form associated with the fixed orientation of the foli
ation F . The element x ∈ ˜︁Lx is the class of the constant path at x ∈ L ⊂M . See again 
for instance [4] for more details on these constructions.

Now suppose that we have the situation in Section 4 of the companion paper [8]. That 
is, we have:
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• foliated manifolds (M,F ) and (M ′, F ′);
• Clifford bundles EM → M and EM ′ → M ′, with Clifford compatible Hermitian 

connections;
• leafwise Dirac operators DF and DF ′ ;
• compact subspaces 𝒦M = M ∖ VM and 𝒦′

M ′ = M ′
∖ V ′

M ′ ;
• an isometry ϕ : VM → V ′

M ′ with ϕ−1(F ′) = F ;
• an isomorphism φ : EM |VM

→ E′
M ′ |V ′

M′ , covering ϕ, with φ∗(∇F ′,E′ |V ′
M′ ) =

∇F,E |VM
.

The pair Φ = (φ, ϕ) is thus a bundle morphism from EM |VM to E′
M ′ |V ′

M ′ . The well 
defined (since they are differential operators) restrictions of DF and DF ′ to the sections 
over VM and V ′

M ′ agree through Φ, i.e.

(Φ−1)∗ ◦DF ◦ Φ∗ |V ′
M′ = DF ′ |V ′

M′ .

Such operators are called Φ compatible. Without loss of generality, we may assume that 
𝒦M and 𝒦′

M ′ are the closures of open subsets of M and M ′ respectively.
Recall the following material from [8]. Denote by g : M → [0,∞) and g′ : M ′ →

[0,∞) compatible smooth approximations to the distance functions 𝔡M (𝒦M , x) and 
𝔡M ′(𝒦′

M ′ , x′), where 𝔡M and 𝔡M ′ are the distance functions on M and M ′. So we assume 
that g and g′ are 0 on 𝒦M and 𝒦′

M ′ respectively and they satisfy g′ ◦ ϕ = g. Hence, for 
s ≥ 0, the open submanifolds M(s) = {g > s} and M ′(s) = {g′ > s} agree through ϕ, 
that is ϕ(M(s)) = M ′(s) and g|M(s) = g′ ◦ ϕ|M(s). For s ≥ 0 denote by Ts the set

Ts = {Ti ⊂ T | Ti ∩M(s) ̸= ∅},

and similarly for T ′
s.

Suppose that (ζ, ζ ′) ∈ 𝒲 × 𝒲 ′ ⊂ 𝒜∗
c(T ) × 𝒜∗

c(T ′), with ζ =
∑︁

(α,γ) α − h∗
γα and 

ζ ′ =
∑︁

(α′,γ′) α
′ − h∗

γ′α′. For simplicity, we have dropped the subscripts. The vector 
subspace 𝒲 ×ϕ 𝒲 ′ ⊂ 𝒲 ×𝒲 ′ consists of elements (ζ, ζ ′) which are ϕ compatible. This 
means that all but a finite number of the (α, γ) and (α′, γ′) are paired, that is

α = ϕ∗(α′) and γ′ = ϕ ◦ γ, so α− h∗
γα = ϕ∗(α′ − h∗

γ′α′).

Definition 2.2. Given β ∈ 𝒜∗
c(T ) and β′ ∈ 𝒜∗

c(T ′), the pair (β, β′) is ϕ-compatible if 
there exists s ≥ 0 so that β = ϕ∗(β′) on Ts. Set

𝒜∗
c(M/F,M ′/F ′;ϕ) = {(β, β′) ∈ 𝒜∗

c(T )×𝒜∗
c(T ′) | (β, β′) is ϕ compatible}/(𝒲 ×ϕ 𝒲 ′).

The de Rham differentials on 𝒜∗
c(T ) and 𝒜∗

c(T ′) yield a well defined relative Haefliger 
complex, whose homology spaces are denoted

H∗
c (M/F,M ′/F ′;ϕ) = ⊕0≤k≤qH

k
c (M/F,M ′/F ′;ϕ),
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and there are well defined graded maps,

π : H∗
c (M/F,M ′/F ′;ϕ) → H∗

c (M/F ) and π′ : H∗
c (M/F,M ′/F ′;ϕ) → H∗

c (M ′/F ′).

which are induced by the projections

𝒜∗
c(M/F,M ′/F ′;ϕ) → 𝒜∗

c(M/F ) and 𝒜∗
c(M/F,M ′/F ′;ϕ) → 𝒜∗

c(M ′/F ′).

Definition 2.3. Suppose (ξ, ξ′) ∈ 𝒜∗
c(M/F,M ′/F ′;ϕ), and let C and C ′ be closed 

(bounded) ϕ compatible holonomy invariant Haefliger currents. Set

⟨(ξ, ξ′), (C,C ′)⟩ = lim 
s→∞

(︁
C(ξ|T∖Ts

)− C ′(ξ′|T ′
∖T ′

s
)
)︁
.

This is well defined because any representative in (ξ, ξ′) is ϕ compatible, so the right 
hand side is eventually constant. In addition, every (ζ, ζ ′) ∈ 𝒲 ×ϕ 𝒲 ′ is ϕ compatible, 
so satisfies

lim 
s→∞

(︁
C(ζ|T∖Ts

)− C ′(ζ ′|T ′
∖T ′

s
)
)︁

= 0.

To see this, recall that there is a global bound on the leafwise length of the γ and γ′ in ζ
and ζ ′. This, and the fact that there are only finitely many unpaired (α, γ) and (α′, γ′), 
insures that for large s, every unpaired (α, γ) will have both Domγ and Ranγ ⊂ T∖Ts, so 
C(α−h∗

γα) will be zero, and similarly for every unpaired (α′, γ′). Those (α, γ) and (α′, γ′)
which are paired and appear in the integration, will have Domγ and/or Ranγ ⊂ T ∖ Ts

with corresponding Domγ′ and/or Ranγ′ ⊂ T ′
∖ T ′

s. In both cases, their integrals will 
cancel.

Remark 2.4. Examples of such currents include the following.

1. Invariant transverse measures Λ and Λ′ on T and T ′ which are ϕ compatible as in 
[8].

2. Suppose ω ∈ C∞(∧∗ν∗) and ω′ ∈ C∞(∧∗ν′∗) are closed holonomy invariant forms on 
M and M ′ which are ϕ compatible. They determine ϕ compatible closed holonomy 
invariant currents, also denoted ωT and ω′

T ′ . In particular,

⟨(ξ, ξ′), (ωT , ω
′
T ′)⟩ = lim 

s→∞

⎛⎜⎝ ∫︂
T∖Ts

ξ ∧ ωT −
∫︂

T ′
∖T ′

s

ξ′ ∧ ω′
T ′

⎞⎟⎠ .

Here ωT = ω |T , which is well defined and is holonomy invariant, as is ω′
T ′ .

For Riemannian foliations, examples of this type abound. In particular, the char
acteristic forms of holonomy invariant bundles which agree at infinity, for example 
∧jν∗ ⊗ (⊗ℓν), and ∧jν′ ∗ ⊗ (⊗ℓν′).
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For definiteness, we will generally use this example in the sequel, but all the state
ments obviously remain valid with more general holonomy invariant currents.

In this paper, we will have a number of different pairings, which will be uniformly 
indicated by the notation ⟨·, ·⟩. The notation should make clear where the objects live. 
For example, we have

⟨
⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(D′
F ′)

⎤⎦ , [ωT , ω
′
T ′ ]⟩ =

∫︂
T

⎛⎝∫︂
F

AS(DF )

⎞⎠ ∧ ωT

−
∫︂
T ′

⎛⎝∫︂
F ′

AS(D′
F ′)

⎞⎠ ∧ ω′
T ′ ,

and

⟨(ch(P0), ch(P0)), (ωT , ω
′
T ′)⟩ = 

∫︂
T

ch(P0) ∧ ωT − 
∫︂
T ′

ch(P ′
0) ∧ ω′

T ′ .

In the first case, the terms in the pairing live in relative Haefliger cohomology. In the 
second, the terms are pairs of bounded Haefliger forms, and the second pair happen to 
agree near infinity.

3. Chern characters in haefliger cohomology

We recall in this section the main steps in the construction of the Chern character 
in Haefliger cohomology and explain how they immediately extend to the case of a pair 
of foliations which are compatible near infinity. In this latter case, our Chern character 
takes values in a relative version of Haefliger cohomology that we introduce below.

In [8] we worked on M , while in [23,25,4,5], we worked on 𝒢, which we will also do 
here, but our basic data will be taken from the ambient manifolds. The results in [8] 
extend readily to 𝒢 with the only change being that the spectral projections used on 
𝒢 are for the operator lifted to Fs. This represents another extension, in the spirit of 
Connes’ extensions in [13,14], of the classical Atiyah L2 covering index theorem, [1]. In 
addition, as will be explained below, the results in the above cited papers where M was 
assumed to be compact still hold provided both M and F are of bounded geometry and 
we use our definition of the Haefliger cohomology.

All the data in the previous section may be lifted to (𝒢, Fs) using the map r : 𝒢 →M . 
The notation we will use is obtained from that above by:

EM → E; 𝒮F → 𝒮; ∇F,E → ∇; L→ ˜︁Lx; DF → D; DL → Dx.
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Thus the smooth 𝒢 invariant family D = {Dx} of leafwise Dirac operators acting on 
sections of 𝒮 ⊗E|˜︁Lx is given as follows. Let X1, . . . , Xp be a local oriented orthonormal 
basis of T ˜︁Lx. Then,

Dx =
p ∑︂

i=1 
ρ(Xi)∇Xi

: C∞
c (𝒢x,𝒮± ⊗E) → C∞

c (𝒢x,𝒮∓ ⊗ E) and 

D2
x : C∞

c (𝒢x,𝒮± ⊗E) → C∞
c (𝒢x,𝒮± ⊗E).

Denote by ∧ν∗s , the exterior powers of the dual normal bundle ν∗s of Fs = r∗F , which 
we identify with s∗(T ∗M) = s∗(TF ∗) ⊕ s∗(ν∗) so that each C∞

c (𝒮 ⊗ E ⊗ ∧ν∗s ) is an 
Ω∗(M)-module. We extend D to an Ω∗(M)-equivariant operator

D : C∞
c (𝒮 ⊗E ⊗ ∧ν∗s ) −→ C∞

c (𝒮 ⊗E ⊗ ∧ν∗s ),

by using the leafwise flat connection on ∧ν∗s determined by the pull-back of the Levi
Civiti connection on T ∗M .

In [5], we used the traces Tr and 𝔗𝔯 to define Connes-Chern characters in H∗
c (M/F )

for operators on C∞
c (𝒮 ⊗ E). For the leafwise spectral projection P0 onto the kernel of 

D2, when this latter is smooth, this is denoted,

ch(P0) ∈ H∗
c(M/F ).

We also proved that if M is compact and Inda(D) is Connes’ K-theory index class 
defined in terms of a parametrix for D, then under the usual regularity assumption, 
ch(P0) = ch(Inda(D)). We now extend these notions to our situation.

We now return to our compatible foliations (M,F ) and (M ′, F ′) and their holonomy 
groupoids 𝒢 and 𝒢′. First, we lift the compatibility data Φ to 𝒢 and denote again the 
corresponding data by Φ, which gives an equivalence off (the generally non-compact 
subsets) K = r−1(KM ) and K ′ = (r′)−1(KM ′), that is on the subsets V = r−1(VM )
and V ′ = (r′)−1(VM ′). In [5], we defined an algebra of super-exponentially decaying 
𝒢-operators on C∞

c (𝒮 ⊗E ⊗ ∧ν∗s ). Here we need a stronger condition on our operators, 
namely that they have finite propagation. This is provided by using operators from the 
algebra C∞

u ((𝒮⊗E⊗∧ν∗s )⊠(𝒮⊗E⊗∧ν∗s )∗), which we denote simply as C∞
u (Fs). Any A =

(Ax)x∈M ∈ C∞
u (Fs) defines a leafwise (smoothing) 𝒢-operator on C∞

c (𝒮⊗E⊗∧ν∗s ) which 
has uniform finite propagation, and its Schwartz kernel is smooth in all variables, with 
all derivatives being globally bounded, the bounds possibly depending on the derivatives.

Using the algebra C∞
u (Fs), we have a K-theory index class represented by idempotents 

constructed from a parametrix, and this K-index does not depend on the parametrix, so 
its Connes-Chern character is also independent of the parametrix. For a more detailed 
discussion of the following construction, see [16], p. 353. In particular, as D is an odd 

super operator, we may write D =
[︄

0 D−

D+ 0

]︄
. Suppose that Qt is a smooth (in t) 
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family of leafwise parametrics for D. That is, each Qt is an odd operator which is smooth 
in all variables, and which has finite propagation remainders, namely the even operators

St = I𝒮+⊗E − Qt
−D+ and Rt = I𝒮−⊗E − D+Qt

−.

For t > 0, set, as in [5],

At =

⎡⎢⎣ S2
t Q−

t (Rt + R2
t )

RtD
+ −R2

t

⎤⎥⎦ .

Then At has finite propagation, is smooth in all variables, and is a bounded leaf
wise smoothing operator, that is, At ∈ C∞

u (Fs). Set π− = diag(0, I𝒮−⊗E), and π+ =
diag(I𝒮+⊗E , 0). Then At + π− is an idempotent as is π−. Set

Inda(D) = [At + π−]− [π−] ∈ K0(C∞
u (Fs)).

Since At+π− is a smooth family of idempotents, it follows from results of [4] that Inda(D)
is independent of t. Since any two parametrics can be joined in a smooth family, it follows 
immediately that Inda(D) does not depend on the parametrix.

For details of the following, see [5], Section 3, where we define the quasi-connection,

C∞(𝒮 ⊗ E ⊗ ∧ν∗s ) ∇ν

−→ C∞(𝒮 ⊗E ⊗ ∧ν∗s ).

Given an operator A on 𝒮 ⊗E ⊗ ∧ν∗s , denote by

∂ν : End(C∞(𝒮 ⊗E ⊗ ∧ν∗s )) → End(C∞(𝒮 ⊗E ⊗ ∧ν∗s ))

the linear operator given by the graded commutator

∂ν(A) = [∇ν , A].

Set θ = (∇ν)2, which is a leafwise differential operator with coefficients in ∧ν∗s . Since ∂2
ν

is not necessarily zero, in [5] we used Connes’ X-trick, see [17], Section III.3, Lemma 9, 
to construct a new differential operator δ out of ∂ν and θ, whose square is zero. Note 
carefully that δA is nilpotent since it always contains a coefficient from ∧ν∗≥1

s .
Corollary 3.7 of [5] states,

Proposition 3.1. The Haefliger form Tr
(︂
At exp

[︂
−(δAt)2

2iπ 

]︂)︂
is closed, and the Haefliger 

class 

𝔗𝔯
(︂
At exp

[︂
−(δAt)2

2iπ 

]︂)︂
is independent of t.
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Definition 3.2. The Connes-Chern character of Inda(D) is,

ch(Inda(D)) = 𝔗𝔯
(︂
At exp

[︃−(δAt)2

2iπ 

]︃)︂
∈ H∗

c (M/F ).

We have the same constructions for D′. In Section 5, we construct families of para
metrics Qt and Q′

t directly from D and D′ in such a way that their remainders are Φ
compatible, so also are At and A′

t.
For pairs (A,A′) of operators from C∞

u (Fs)×C∞
u (F ′

s) which are Φ-compatible, there 
is also an algebra C∞

u (Fs, F
′
s; Φ), and the previous construction of the analytic index 

class extends immediately to yield the relative analytic index class

Inda(D,D′) = [(At + π−, A′
t + π′

−]− [(π−, π′
−)] ∈ K0(C∞

u (Fs, F
′
s; Φ)).

The Connes-Chern character then extends to the relative case

ch : K0(C∞
u (Fs, F

′
s; Φ)) −→ H∗

c (M/F,M ′/F ′;ϕ),

with the obvious definition (see [5], Theorem 3.2 for the notation below and more precise 
details),

ch([ẽ, ẽ′]) = 
[︃
Tr
(︃
e exp

(︃−(δe)2

2iπ 

)︃)︃
,Tr

(︃
e′ exp

(︃−(δe′)2

2iπ 

)︃)︃]︃
∈ H∗

c (M/F,M ′/F ′;ϕ).

Definition 3.3. Suppose the parametrics Qt and Q′
t have Φ compatible remainders, so 

with Φ compatible operators At and A′
t. Then the relative Connes-Chern character of 

Inda(D,D′) is given by

ch(Inda(D,D′)) =[︃
Tr
(︃
At exp

(︃−(δAt)2

2iπ 

)︃)︃
,Tr

(︃
A′

t exp
(︃−(δA′

t)2

2iπ 

)︃)︃]︃
∈ H∗

c (M/F,M ′/F ′;ϕ).

The class ch(Inda(D,D′)) is clearly well defined due to its independence of the Φ
compatible pair of finite propagation parametrics. This is proved below, see Theorem 5.5, 
where we also point out that it is independent of the parameter t.

4. Four theorems

Our first main theorem is the following extension of a classical Atiyah-Singer Index 
Theorem. This theorem is purely local and, as in [8], requires bounded geometry.

Denote by [AS(DF )] the Atiyah-Singer characteristic class for DF , and similarly for 
D′

F ′ . Note that for large s, the differential forms satisfy AS(DF ) = ϕ∗(AS(D′
F ′)) on Ms, 

so
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F

AS(DF ),
∫︂
F ′

AS(D′
F ′))

⎞⎠ ∈ 𝒜∗
c(M/F,M ′/F ′;ϕ).

Definition 4.1. The relative topological index of (D,D′) is,

Indt(D,D′) = 

⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(D′
F ′))

⎤⎦ ∈ H∗
c (M/F,M ′/F ′;ϕ).

Theorem 4.2. [The Higher Relative Index Theorem] Suppose that (M,F ), (M ′, F ′), D
and D′ are as in Section 2. In particular, F and F ′ need not be Riemannian. Then,

ch(Inda(D,D′)) = Indt(D,D′) ∈ H∗
c (M/F,M ′/F ′;ϕ)

In particular, for any closed ϕ-compatible pair (C,C ′) of holonomy invariant closed Hae
fliger currents, the following scalar formula holds

⟨ch(Inda(D,D′)), [C,C ′]⟩ = lim 
s→+∞

⎛⎝⟨∫︂
F

AS(DF )|T∖Ts
, C⟩ − ⟨

∫︂
F ′

AS(D′
F ′)|T ′

∖T ′
s
, C ′⟩

⎞⎠ .

.

Denote by P(0,ϵ) the spectral projection for D2 for the interval (0, ϵ). The Novikov
Shubin invariants NS(D) of D are greater than k ≥ 0 provided that there is τ > k so 
that

Tr(P(0,ϵ)) is 𝒪(ϵτ ) as ϵ→ 0.

A Haefliger form Ψ depending on ϵ is 𝒪(ϵτ ) as ϵ→ 0 means that there is a representative 
ψ ∈ Ψ defined on a transversal T , and a constant C > 0, so that the function on T , 
∥ψ∥T ≤ Cϵτ as ϵ→ 0. Here ∥ ∥T is the pointwise norm on forms on the transversal T
induced from the metric on M .

Recall that P0 is the spectral projection onto the kernel of D2. In general the leafwise 
operators P(0,ϵ) and P0 are not transversely smooth (although they are always leafwise 
smooth), so that, in general, their Haefliger traces in 𝒜∗

c(M/F ) are not defined. When 
P0 is transversely smooth, see [5], Definition 3.8,

ch(P0) = 𝔗𝔯
(︂
π±P0 exp

(︃−(δ(π±P0))2

2iπ 

)︃)︂
∈ H∗

c (M/F ),

and similarly for P ′
0. Here π± is the grading operator

π± = diag(I𝒮+⊗E ,− I𝒮−⊗E).
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When P(0,ϵ) is transversely smooth,

ch(P(0,ϵ)) = 𝔗𝔯
(︂
π±P(0,ϵ) exp

(︃−(δ(π±P(0,ϵ)))2

2iπ 

)︃)︂
∈ H∗

c (M/F ),

and similarly for P ′
(0,ϵ) For simplicity of notation, we will uniformly suppress the constant 

2iπ in what follows. As the closed Haefliger differential forms Tr(π±P0 exp
(︁−(δ(π±P0))2

)︁
)

and Tr(π′
±P

′
0 exp

(︁−(δ(π′
±P

′
0))2

)︁
) are not ϕ compatible in general, we proceed as follows.

The component of ch(Inda(D,D′)) in H2k
c (M/F,M ′/F ′;ϕ) is denoted chk(Inda(D,D′)), 

and the part of ch(Inda(P0) in H2k
c (M/F ) is denoted chk(P0)), and similarly for P ′

0.
The following theorem generalizes the main result of [5] to bounded geometry folia

tions.

Theorem 4.3. [Riemannian Foliation Relative Index Bundle Theorem] Fix 0 ≤ ℓ ≤ q/2, 
where q is the codimension of F and F ′. Assume that:

• the foliations F and F ′ are Riemannian;
• the leafwise operators P0, P ′

0, P(0,ϵ) and P ′
(0,ϵ) (for ϵ sufficiently small) are trans

versely smooth;
• NS(D) and NS(D′) are greater than ℓ.

Then, for 0 ≤ k ≤ ℓ, we have in H2k
c (M/F )×H2k

c (M ′/F ′)

(π × π′) chk(Inda(D,D′)) = (chk(Inda(D)), chk(Inda(D′))) = (chk(P0), chk(P ′
0)).

Remarks 4.4. 

1. If the foliations F and F ′ are not Riemannian then we can still prove this equality 
but under the stronger assumption that NS(D) and NS(D′) be greater than 3q, see 
[25,9].

2. The examples in [6] show that the conditions on the Novikov-Shubin invariants are 
the best possible.

3. Note that if there are uniform gaps in the spectrums at 0, that is there is ϵ > 0 so 
P(0,ϵ) = P ′

(0,ϵ) = 0, then P(0,ϵ) and P ′
(0,ϵ) are transversely smooth and the Novikov

Shubin invariants are infinite. For top dimensional foliations, i.e. TF = TM , these 
special cases were studied for instance in [33,18].

Combining Theorem 4.2 and Theorem 4.3, we immediately deduce the following im
portant corollary.

Theorem 4.5. Under the assumptions of Theorem 4.3, assume furthermore that P0 =
P ′

0 = 0, then
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F

AS(DF ),
∫︂
F ′

AS(D′
F ′)

⎞⎠ = (0, 0) in H∗
c (M/F )×H∗

c (M ′/F ′).

So the vanishing conclusion of the previous theorem holds in particular when there 
exists ϵ > 0 such that P[0,ϵ) = 0 and P ′

[0,ϵ) = 0.
Denote by ω ∈ C∞(∧∗ν∗) and ω′ ∈ C∞(∧∗ν′∗) closed bounded holonomy invariant 

differential forms on M and M ′ which are ϕ compatible. For simplicity, we will assume 
that ω and ω′ are ϕ compatible on VM and V ′

M ′ . These determine ϕ compatible closed 
bounded Haefliger forms on T , denoted ωT and ω′

T ′ . Recall that dx is the global volume 
form on M .

Theorem 4.6. [Higher Relative Index Pairing Theorem] In addition to the assumptions 
in Theorem 4.3, assume the following:

• for ϵ sufficiently small, P[0,ϵ) satisfies 
∫︂
M

tr(P[0,ϵ))dx < ∞, and similarly for P ′
[0,ϵ);

• M , and so also M ′, has sub-exponential growth.

Then, for any homogeneous ω ∈ C∞(∧q−2kν∗) and ω′ ∈ C∞(∧q−2kν′∗) as above, (0 ≤
k ≤ ℓ), ∫︂

T

ch(P0) ∧ ωT and 
∫︂
T ′

ch(P ′
0) ∧ ω′

T ′ are well defined complex numbers,

and

∫︂
T

ch(P0) ∧ ωT − 
∫︂
T ′

ch(P ′
0) ∧ ω′

T ′ = ⟨
⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(D′
F ′)

⎤⎦ , [ωT , ω
′
T ′ ]⟩.

Remarks 4.7. 

1. Since the pair of Connes-Chern characters of P0 and P ′
0 is usually not ϕ-compatible, 

the previous theorem is totally new and we cannot deduce it from any absolute 
version of the index bundle theorem. This is compatible with the classical relative 
index theorem.

2. The theorem also holds for appropriate closed ϕ compatible closed holonomy invari
ant currents, but this more general statement will not be needed for our applications.

3. We shall see in Section 6 that the finite integral assumptions are satisfied when the 
zero-th order operator ℛE

F defined there in the Bochner formula is strictly positive 
near infinity. As ℛE

F is locally defined, this means that ℛE′
F ′ is also strictly positive 

near infinity.
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4. The growth condition is a technical assumption which simplifies the proof, it can be 
weakened as explained in Remark 5.7

5. The main theorem in [8] recovers the Gromov-Lawson relative index theorem in full 
generality for bounded geometry manifolds, which correspond to top-dimensional 
foliations. Our results here require more conditions to deal with the higher com
ponents of the Connes-Chern character, and it only recovers the Gromov-Lawson 
results for sub-exponential bounded geometry manifolds. Recall that in the top
dimensional case, Gromov-Lawson show that there is ϵ > 0 so that P(0,ϵ) = 0, and ∫︂
M

tr(P0)dx <∞, so all the other assumptions of Theorems 4.3 and 4.6 are fulfilled.

5. Proofs of the theorems

This section is devoted to the proofs of Theorems 4.2, 4.3, 4.5 and 4.6. The proofs are 
rather technical and have been split into many intermediate lemmas and propositions. 
We shall first prove Theorem 4.2 and then later on Theorems 4.3 and 4.5, and eventually 
we shall end this section by the proof of Theorem 4.6.

Recall the following construction from [8]. Denote the Fourier Transform of a complex 
valued function g by ˆ︁g and FT (g), and its inverse transform FT−1(g) by ˜︁g. If h is also 
a complex function, denote the convolution of g and h by g ⋆ h. Set gλ(z) = g(λz), for 
non-zero λ ∈ R∗. We have the following facts:

FT (gλ) = 1 
λ
FT (g) 1 

λ
; FT (g ⋆ h) =

√
2πFT (g)FT (h); and 

FT (ˆ︁g) = FT−1(ˆ︁g) = g, if g is even.

Fix a smooth even non-negative function ψ supported in [−1, 1], which equals 1
on [−1/4, 1/4], is non-increasing on R+, and whose integral over R is 1. Note that 
FT ( ˆ︁ψ) = ψ since ψ is even. The family 1 √

t
ˆ︁ψ 1 √

t
is an approximate identity when act

ing on a Schwartz function f by convolution, since, up to the constant 
√

2π which we 
systematically ignore,

1 √
t
ˆ︁ψ 1 √

t
⋆ f = FT−1(FT ( 1 √

t
ˆ︁ψ 1 √

t
⋆ f)) = FT−1(ψ√

t
ˆ︁f) → ˜︁ˆ︁f = f,

in the Schwartz topology as t→ 0. Denote as usual by || · ||r,s the norm of an operator 
acting from the r Sobolev space to the s Sobolev space. Then more is true.

Lemma 5.1. Suppose that μ : R+ → R+, with μ(t) ≤ Cpt
p or μ(t) ≥ Cpt

−p near 0, where 
p > 0 and Cp > 0. Then, for any Schwartz function f ,

lim 
t→0

(︄[︃
1 √
t
ˆ︁ψ 1 √

t
⋆ f

]︃
μ(t)

− fμ(t)

)︄
= 0
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in the Schwartz topology.
Thus for all r, s,

lim 
t→0

||
[︃

1 √
t
ˆ︁ψ 1 √

t
⋆ f

]︃
μ(t)

(D) − fμ(t)(D)||r,s = 0,

so the differences of their Schwartz kernels converge uniformly to 0 pointwise.

Proof. The last statement follows from standard Sobolev theory given the first. Thus we 
need only prove that the difference of the Fourier transforms goes to zero in the Schwartz 
topology. But,

FT

(︄[︃
1 √
t
ˆ︁ψ 1 √

t
⋆ f

]︃
μ(t)

)︄
− FT

[︁
fμ(t)

]︁
= 1 

μ(t)
ˆ︁f 1 
μ(t)

(ψ√
t/μ(t) − 1).

Now, ψ√
t/μ(t)(z) − 1 is 0 for |z| ≤ μ(t)/4

√
t and constant for |z| ≥ μ(t)/

√
t, so all 

its derivatives are zero on these subsets. In addition, for all non-negative n, there is a 
constant Cn so that

| ∂
n

∂zn
(ψ√

t/μ(t)(z)− 1)| ≤ Cn(
√
t/μ(t))n.

Thus, we have

||zn ∂m

∂zm

[︃
1 

μ(t)
ˆ︁f 1 
μ(t)

(ψ√
t/μ(t) − 1)

]︃
||∞ =

sup 
|z|≥μ(t)/(4

√
t)

⃓⃓⃓⃓
zn

∂m

∂zm

[︃
1 

μ(t)
ˆ︁f 1 
μ(t)

(ψ√
t/μ(t) − 1)

]︃⃓⃓⃓⃓
≤ 

sup 
|z|≥μ(t)/(4

√
t)

⃓⃓⃓⃓
⃓zn

m ∑︂
k=0

Cm−k(
√
t/μ(t))m−k ∂k

∂zk

[︃
1 

μ(t)
ˆ︁f 1 
μ(t)

]︃
(z)

⃓⃓⃓⃓
⃓ = 

m ∑︂
k=0

Cm−k(
√
t/μ(t))m−kμ(t)−(k+1) sup 

|z|≥μ(t)/(4
√
t)

⃓⃓⃓
zn ˆ︁f (k) (z/μ(t))

⃓⃓⃓
= 

m ∑︂
k=0

Cm−k(
√
t)m−kμ(t)−(m+1) sup 

|z|≥1/(4
√
t)

⃓⃓⃓
zn ˆ︁f (k)(z)

⃓⃓⃓
.

Since f , so also ˆ︁f , is Schwartz, for any non-negative k ∈ Z, the function z ↦→ zn ˆ︁f (k)(z)
is Schwartz. But for any Schwartz function g, any N ≥ 0 (N ≤ 0 is trivial) and 
any η > 0, lim 

t→0
t−N sup 

|z|≥η/
√
t

|g(z)| = 0. Thus, if μ(t) ≤ Cpt
p or μ(t) ≥ Cpt

−p near 0, 

lim 
t→0

||zn ∂m

∂zm

[︃
1 

μ(t)
ˆ︁f 1 
μ(t)

(ψ√
t/μ(t) − 1)

]︃
||∞ = 0. □
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Define the functions α(t) and β(t) as follows. Both have domains (0, 1), and are 
smooth. α(t) = t near 0, and α(t) = 1−t near 1, it is increasing on (0, 1/2] and symmetric 
about t = 1/2. β is an increasing function, with β = t near 0, and β(t) = (1− t)−1 near 
1.

Set e(z) = e−z2/2, and for t ∈ (0, 1), set

χt(z) = 

[︄
1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ e

]︄
√︁

β(t)

(z).

Remark 5.2. By Lemma 5.1, we have,

lim 
t→0

(︂
χt(z) − e−tz2/2

)︂
= 0 = lim 

t→1

(︂
χt(z) − e−z2/(2(1−t))

)︂
,

in the Schwartz topology. In addition, the limit as t → 0 of the Schwartz kernel of 
χt(D) − e−tD2/2 and the limit as t→ 1 of the Schwartz kernel of χt(D) − e−D2/(2(1−t))

both converge uniformly pointwise to zero.

Lemma 5.3. χt(D) has finite propagation ≤√︁β(t)/α(t).

Proof. Since ˆ︁e = e, we have that up to a constant,

FT ( 1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ e) = ψ√︁α(t)e.

In fact, up to a constant,

χt(D) = FT−1(ψ√︁α(t)e)(
√︁

β(t)D) = 
∫︂
R 

ψ(
√︁
α(t)ξ)e(ξ) cos(ξ

√︁
β(t)D) dξ,

since ψ√︁α(t)e is even. Setting η =
√︁
α(t)ξ gives,

χt(D) = 1 √︁
α(t)

∫︂
|η|≤1

ψ(η)e(η/
√︁
α(t)) cos(η

√︁
β(t)/α(t)D)dη.

The operator cos(η
√︁

β(t)/α(t)D) has propagation ≤ |η√︁β(t)/α(t)|, see [12,29]. Thus 
χt(D) has finite propagation ≤ √︁

β(t)/α(t), which near 0 is ≤ 1, while near 1 it is 
≤ (1− t)−1, so may go to infinity as t→ 1. □

As D is an odd super operator, we may write

D =
[︄

0 D−

D+ 0

]︄
, and we set 
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Qt =
(︂1− χt(0)−1χt(z)

z

)︂
(D) = 

(︂1− χt(0)−1χt(z)
z2 z

)︂
(D).

We claim that Qt is a smooth family of leafwise parametrics for D with finite propagation 
Φ compatible remainders, namely the even operators

St = I𝒮+⊗E − Qt
−D+ and Rt = I𝒮−⊗E − D+Q−

t .

There are similar relations for D−.
The main step in the proof of Theorem 4.2 is the following expected independent 

result.

Proposition 5.4. For 0 < t < 1, set, as in [8],

At =

⎡⎢⎣ S2
t Q−

t (Rt + R2
t )

RtD
+ −R2

t

⎤⎥⎦ =

⎡⎢⎣ S2
t StQ

−
t (1 + Rt)

RtD
+ −R2

t

⎤⎥⎦ ,

a form which is more useful here. Then At and δAt, so also (δAt)2, have finite propa
gations which are bounded by multiples of 

√︁
β(t)/α(t), are smooth in all variables, and 

are bounded leafwise smoothing operators.

Proof. We deal with At first. Note that St = χt(0)−1χt(D) acting on 𝒮+ ⊗ E, and 
similarly for Rt acting on 𝒮−⊗E. They both have finite propagations, and by Theorem 
2.1, [29], they are both smooth in all variables. It follows immediately that S2

t , R2
t , RtD

+, 
St and Rt are also smooth in all variables. Since propagation is additive for compositions, 
they all have finite propagations, which are bounded by multiples of 

√︁
β(t)/α(t). Finally, 

since χt(z) is a Schwartz function, χt(D) and χt(D)D are bounded leafwise smoothing 
operators.

To deal with Q−
t , we show that

˜︁Qt(D−D+) = 

[︁(︁
1− χt(0)−1χt(z)

)︁
(D)

]︁+
D−D+

has finite propagation which is bounded by a multiple of 
√︁
β(t)/α(t), so also does Q−

t =˜︁Qt(D−D+)D−, and that StQ
−
t is smooth in all variables and is a bounded leafwise 

smoothing operator.
For u ∈ (0, 1], set

χt,u(z) = 

[︄
1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ eu

]︄
√︁

β(t)

(z),

and
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˜︁qt,u(z) = 
1− χt,u(0)−1χt,u(z)

z2 = χt,u(0)−1χ
t,u(0)− χt,u(z)

z2 .

Notice that χt,0(z) and ˜︁qt,0(z) are also well defined, and that for fixed z, the resulting 
function is continuous on [0, 1] and smooth on (0, 1). Since

χt,u(z) = FT−1(FT

(︄
1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ eu

)︄
)(
√︁

β(t)z),

we have,

χt,u(z) =
∫︂
R 

ψ(
√︁
α(t)y) 1 

u
e−y2/2u2

cos(y
√︁

β(t)z)dy

=
∫︂
R 

ψ(
√︁
α(t)uy)e−y2/2 cos(uy

√︁
β(t)z)dy,

and,

χt,u(0) = 
∫︂
R 

ψ(
√︁

α(t)uy)e−y2/2dy.

The latter is smooth in t and u, positive, and bounded by 
∫︂
R 

e−y2/2dy. Thus χt,u(0)−1

is smooth on (0, 1)× (0, 1). In addition,

− ∂

∂u

(︁
χt,u(0)−1)︁ = χt,u(0)−2

∫︂
R 

ψ′(
√︁
α(t)uy)

√︁
α(t)ye−y2/2dy,

so has the same properties as χt,u(0)−1.
Next, we have

˜︁qt,u(z) = χt,u(0)−1
∫︂
R 

ψ(
√︁

α(t)uy)e−y2/2 (1− cos(uy
√︁

β(t)z))
z2 dy.

So,

∂˜︁qt,u
∂u 

(z) = 
∂

∂u

(︁
χt,u(0)−1)︁ ∫︂

R 

ψ(
√︁
α(t)uy)e−y2/2 (1− cos(uy

√︁
β(t)z))

z2 dy + 

χt,u(0)−1
∫︂
R 

√︁
α(t)ψ′(

√︁
α(t)uy)ye−y2/2 (1− cos(uy

√︁
β(t)z))

z2 dy + 
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χt,u(0)−1
∫︂
R 

√︁
β(t)ψ(

√︁
α(t)uy)ye−y2/2 sin(uy

√︁
β(t)z)

z
dy.

For t and z fixed, this is a smooth function of u.
Note that χt,0(z) is well defined and equals 

∫︂
R 

e−y2/2dy, which is independent of z. 

Thus, ˜︁qt,0(z) is also well defined and equals 0. As ˜︁qt,1(D)+ = ˜︁Qt(D−D+), we have

˜︁Qt(D−D+) = ˜︁qt,1(D)+ − ˜︁qt,0(D)+ =

⎡⎣ 1 ∫︂
0 

∂˜︁qt,u
∂u 

(D) du

⎤⎦+

,

so we need to show that ∂˜︁qt,u
∂u 

(D) has finite propagation which is bounded by a multiple of √︁
β(t)/α(t). Since χt,u(0) and ∂

∂u

(︁
χt,u(0)−1)︁ are independent of z, they give multiples of 

the identity map when evaluated at D, so have propagation zero and may be disregarded. 

Thus, we may assume that ˜︁qt,u(z) = χt,u(z)− χt,u(0)
z2 .

Since χt,u(z) is an even function, it has Taylor expansion in z with integral remainder

χt,u(z) = χt,u(0) + 
(χt,u)(2)(0)

2 
z2 + 

z4

6 

1 ∫︂
0 

(1− v)3(χt,u)(4)(vz)dv.

So the Taylor expansion in z with integral remainder of ˜︁qt,u(z) = χt,u(z)− χt,u(0)
z2 is

˜︁qt,u(z) = 
(χt,u)(2)(0)

2 
+ z2

6 

1 ∫︂
0 

(1− v)3(χt,u)(4)(vz)dv.

The term ∂
∂u ((χt,u)(2)(0)) is independent of z, so, as above, it may be disregarded. Using 

the fact that

χt,u(vz) = 
∫︂
R 

ψ(
√︁

α(t)y) 1 
u
e−y2/2u2

cos(y
√︁

β(t)vz)dy,

we have

(χt,u)(4)(vz) = 
∫︂
R 

ψ(
√︁

α(t)y)β(t)2v4y4 1 
u
e−y2/2u2

cos(y
√︁

β(t)vz)dy = 

[︄
1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ β(t)2v4e(4)
u

]︄
(
√︁

β(t)vz) = 

[︄
1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ β(t)2v4peu

]︄
(
√︁
β(t)vz),
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where p is a finite polynomial in u and z, since eu(z) = e−u2z2/2. Note carefully that 
∂
∂u (χt,u)(4)(vz) has the same form.

As peu is a Schwartz function for non-zero u, so is (χt,u)(4)(vD), and the now usual 
argument shows that it has propagation ≤ v

√︁
β(t)/α(t). As D2 has zero propagation, 

∂˜︁qt,u
∂u 

(D) has propagation which is a multiple of 
√︁
β(t)/α(t), so also do ˜︁Qt and Q−

t .
For smoothness and bounded leafwise smoothing of StQ

−
t , first note that

St

1 ∫︂
0 

∂

∂u

(︃
(χt,u)(2)(0)

2 

)︃
(D)du = 

⎛⎝ 1 ∫︂
0 

∂

∂u

(︃
(χt,u)(2)(0)

2 

)︃
(D)du

⎞⎠St,

and St has these properties. Finally, any positive power of D times an operator of the 
form [︄

1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ β(t)2v4peu

]︄
(
√︁

β(t)vD)

has these properties, (the function in the brackets is Schwartz), see for instance Theorem 
2.1, [29]. Thus,

1 ∫︂
0 

D2

6 

1 ∫︂
0 

(1− v)3 ∂

∂u
(χt,u)(4)(vD)dv du

has these properties. Therefore, StQ
−
t has all the requisite properties, so At does also.

The operator δAt is essentially a polynomial in At, ∂ν(At) = [∇ν , At], and θ = (∇ν)2. 
Both ∇ν and θ are smooth and bounded in all variables and are differential operators. 
Since At has finite propagation and is smooth in all variables, δAt and (δAt)2 also have 
finite propagations and are smooth in all variables.

It remains to show that δAt is bounded leafwise smoothing, but this is a routine 
exercise. We give some details for the convenience of the reader. Every term of δAt

contains either At, ∂ν(At), or both. As At is bounded leafwise smoothing, we need 
only show that ∂ν(At) = [∇ν , At] is bounded leafwise smoothing, since θ composed 
with a bounded leafwise smoothing operator is bounded leafwise smoothing. As ∂ν is a 
derivation, we need only show that ∂ν applied to the individual elements of At, save D+, 
yields a bounded leafwise smoothing operator.

First,

∂ν(χt(D)) = ∂ν

⎛⎝∫︂
R 

1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

(y)e−(
√︁

β(t)D−y)2/2dy

⎞⎠ = 

−1
2

∫︂
R 

1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

(y) 
1 ∫︂

0 

e−(1−w)(
√︁

β(t)D−y)2/2∂ν((
√︁

β(t)D−y))2)e−w(
√︁

β(t)D−y)2/2dw dy.
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For the second equality, we refer to the proof of Proposition 3.5 of [23], which is an 
extension of Proposition 2.8 of [10] to foliations with Hausdorff holonomy groupoids. 
Now, ∂ν((

√︁
β(t)D − y)2) is a differential operator with smooth bounded coefficients, so 

∂ν(χt(D)) has the same properties as χt(D), i.e. it is bounded and leafwise smoothing. 
Thus ∂ν(St) and ∂ν(Rt) are bounded leafwise smoothing. Since ∂ν(D) is a differential 
operator with smooth bounded coefficients, Rt∂ν(D) is also bounded leafwise smoothing. 
Finally, as Q−

t = ˜︁Qt(D−D+)D−, it suffices to show that St∂ν( ˜︁Qt(D−D+)) is bounded 
leafwise smoothing. As above, this follows if we show that St∂ν(∂˜︁qt,u∂u (D)) is bounded 
leafwise smoothing. For the terms

St∂ν

(︃
∂

∂u
((χt,u)(2)(0))(D)

)︃
= ∂ν

(︃
∂

∂u
((χt,u)(2)(0))

)︃
St, and St∂ν(

D2

6 
)

this is obvious. As noted above, the term ∂ν

⎛⎝ 1 ∫︂
0 

(1− v)3 ∂

∂u
(χt,u)(4)(vD)dv

⎞⎠ has the 

form

∂ν

⎛⎝ 1 ∫︂
0 

(1− v)3
[︄

1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

⋆ β(t)2v4peu

]︄
(
√︁
β(t)vD)dv

⎞⎠ = 

∂ν

⎛⎝ 1 ∫︂
0 

(1− v)3
∫︂
R

(︂ 1 √︁
α(t)

ˆ︁ψ 1 √︁
α(t)

(y)
)︂
β(t)2v4p(u,

√︁
β(t)vD − y)e−u(

√︁
β(t)vD−y)2/2dy dv 

⎞⎠.

The argument used for ∂ν(χt(D)) is also valid here, so we have the result. □
We have the same results for D′, and since At and A′

t are constructed directly from 
D and D′ and have finite propagation, they are Φ compatible, as are δAt and δA′

t. Thus 
Tr
(︁
At exp(−(δAt)2

)︁
and Tr

(︁
A′

t exp(−(δA′
t)2
)︁

are ϕ compatible. Now Theorem 4.2 will 
be deduced right away from the following

Theorem 5.5. For t ∈ (0, 1), the ϕ compatible Haefliger forms Tr
(︁
At exp(−(δAt)2

)︁
and 

Tr
(︁
A′

t exp(−(δA′
t)2
)︁

are closed. In addition,

[︁
Tr
(︁
At exp(−(δAt)2)

)︁
,Tr

(︁
A′

t exp(−(δA′
t)2)

)︁]︁ ∈ H∗
c (M/F,M ′/F ′;ϕ)

is independent of t. So ch(Inda(D,D′)) is well defined, and

ch(Inda(D,D′)) = Indt(D,D′).

Proof. The Haefliger forms are closed by Proposition 3.1, which also gives that 
d 
dt Tr

(︁
At exp(−(δAt)2

)︁
= dHWt, and d 

dt Tr
(︁
A′

t exp(−(δA′
t)2
)︁

= dHW ′
t . To finish the 
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proof of t independence, we need only show that Wt and W ′
t can be chosen to be ϕ

compatible.
Recall that π± is the grading operator π± = diag(I𝒮+⊗E ,− I𝒮−⊗E) = π+ − π−, and 

similarly for π′
±. When we identify the spin bundles and Dirac operators off compact 

subspaces, we also identify these gradings, so they are Φ compatible. In particular, π−
and π′

− are Φ compatible. Note that At + π− and A′
t + π′

− are idempotents. Using this 
fact, in [4], Corrigendum, it is shown that

d 
dt

(︁
Tr
(︁
(At + π−) exp(−(δ(At + π−))2)

)︁
,Tr

(︁
(A′

t + π′
−) exp(−(δ(A′

t + π′
−)2)

)︁)︁
=

dH(Wt,W
′
t),

where (Wt,W
′
t) ∈ 𝒜∗

c(M/F,M ′/F ′;ϕ), in particular they are ϕ compatible. This follows 
from the fact that the operators ∂ν, θ,Θ, and δ all preserve Φ compatibility, and that 
Wt and W ′

t are constructed using those operators, At, A′
t, π−, π′

− (and the identities 
I and I′), and their derivatives with respect to t. Since At, A′

t, π−, π′
−, I and I′ are Φ

compatible, Wt and W ′
t are ϕ compatible. As

dH Tr
(︁
(At + π−) exp(−(δ(At + π−))2)

)︁
= dH Tr

(︁
(A′

t + π′
−) exp(−(δ(A′

t + π′
−)2)

)︁
= 0,

it follows that[︁
Tr
(︁
(At + π−) exp(−(δ(At + π−))2)

)︁
,Tr

(︁
(A′

t + π′
−) exp(−(δ(A′

t + π′
−)2)

)︁]︁
∈ H∗

c (M/F,M ′/F ′;ϕ)

is independent of t.
Next, using Proposition 3.5 and Corollary 3.7 of [5], with the reasoning above, (that 

is: all the operators used in the proofs preserve Φ compatibility, so if the input is Φ
compatible, the output is ϕ compatible), shows that[︁

Tr
(︁
At exp(−(δAt)2)

)︁
,Tr

(︁
A′

t exp(−(δA′
t)2)

)︁]︁
=[︁

Tr
(︁
(At + π−) exp(−(δ(At + π−))2)

)︁
,Tr

(︁
(A′

t + π′
−) exp(−(δ(A′

t + π′
−)2)

)︁]︁
∈ H∗

c (M/F,M ′/F ′;ϕ).

For the equality ch(Inda(D,D′)) = Indt(D,D′), standard techniques used in [24,5], 
coupled with Remark 5.2, show that

lim 
t→0

tr
(︁
At exp(−(δAt)2)

)︁
= AS(DF ),

uniformly pointwise on M , and we have the same for A′
t. As Tr

(︁
At exp(−(δAt)2)

)︁
involves integrating over compact subsets, we may interchange the limit with the in
tegration. □
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So we have Theorem 4.2.
Note that so far, we have not used the assumptions in Theorem 4.3 or 4.6. We now 

move on to the proofs of Theorems 4.3 and 4.5. For the proof of Theorem 4.3, we need 
to show that

lim 
t→1

Tr
(︁
At exp(−(δAt)2)

)︁
= Tr

(︁
π±P0 exp(−(δ(π±P0))2)

)︁
.

Recall that At is only defined for 0 < t < 1, that P0 is the projection onto the kernel 
of D2, and that At exp(−(δAt)2) has propagation bounded by cA

√︁
β(t)/α(t) for some 

cA ∈ R+. We recall below that

lim 
t→1

kP[0,ϵ)AtP[0,ϵ))(x, x) = kP[0,ϵ)π±P0P[0,ϵ)(x, x) = kπ±P0(x, x),

uniformly pointwise which is sufficient for our purposes.
Denote by ϱ[ϵ,∞) the characteristic function for the interval [ϵ,∞).

Lemma 5.6. For ℓ a non-negative integer, there exists a constant Cℓ > 0 depending only 
on ℓ, such that

||zℓϱ[ϵ,∞)χ
t(z)ϱ[ϵ,∞)||∞ ≤ Cℓe

−1/64α(t) + ϵℓe−ϵ2β(t)/2 → 0, exponentially as t→ 1.

Proof. First note that,

||zℓϱ[ϵ,∞)χ
tϱ[ϵ,∞)||∞ ≤ ||zℓϱ[ϵ,∞)

(︂
χt − e√︁β(t)

)︂
ϱ[ϵ,∞)||∞ + ||zℓϱ[ϵ,∞)e√︁β(t)ϱ[ϵ,∞)||∞ ≤ 

||zℓϱ[ϵ,∞)

(︂
χt − e√︁β(t)

)︂
ϱ[ϵ,∞)||∞ + ϵℓe−ϵ2β(t)/2,

since the maximum for the second term for t close enough to 1 will occur at z = ϵ, as 
β(t) →∞ as t→ 1.

Next, ||zℓϱ[ϵ,∞)

(︂
χt − e√︁β(t)

)︂
ϱ[ϵ,∞)||∞ is bounded by ||zℓ

(︂
χt − e√︁β(t)

)︂
||∞, which in 

turn is bounded by the L1 norm of FT (zℓ
(︂
χt − e√︁β(t)

)︂
). Up to a constant depending 

only on ℓ,

FT (zℓ
(︂
χt − e√︁β(t)

)︂
) = 

∂ℓ

∂zℓ
FT

(︂
χt − e√︁β(t)

)︂
=

∂ℓ

∂zℓ

⎛⎝ 1 √︁
β(t)

FT

(︄
1 √︁
α(t)

ψ̂1/
√︁

α(t) ∗ e
)︄

1/
√︁

β(t)

− 1 √︁
β(t)

e1/
√︁
β(t)

⎞⎠ =

∂ℓ

∂zℓ

(︄
1 √︁
β(t)

(︂
ψ√︁α(t)e

)︂
1/
√︁

β(t)
− 

1 √︁
β(t)

e1/
√︁
β(t)

)︄
= 

∂ℓ

∂zℓ

(︄
e1/

√︁
β(t)√︁

β(t)

(︂
ψ√︂α(t)

β(t) 
− 1

)︂)︄
=

ℓ ∑︂
k=0

(︁
ℓ
k

)︁ ∂k

∂zk

(︄
e1/

√︁
β(t)√︁

β(t)

)︄
∂ℓ−k

∂zℓ−k

(︂
ψ√︂α(t)

β(t) 
− 1

)︂
.
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The function ψ√︂α(t)
β(t) 

− 1 = 0 on |z| ≤ 1 
4
√︁

α(t)/β(t) , and the norms of its deriva

tives are globally bounded by a constant depending only on ℓ. Thus the L1 norm of 
FT

(︂
zℓ
(︂
χt − e√︁β(t)

)︂)︂
is bounded by a constant, depending only on ℓ, times

ℓ ∑︂
k=0

∫︂
|z|≥ 1 

4
√︁

α(t)/β(t)

⃓⃓⃓⃓
∂k

∂zk

(︂
e1/

√︁
β(t)

)︂⃓⃓⃓⃓ dz √︁
β(t)

=
ℓ ∑︂

k=0

∫︂
|z|≥ 1 

4
√︁

α(t)/β(t)

⃓⃓⃓
pk(1/

√︁
β(t), z/

√︁
β)
⃓⃓⃓ (︂

e1/
√︁

β(t)

)︂ dz √︁
β(t)

=

ℓ ∑︂
k=0

∫︂
|z|≥ 1 

4
√︁

α(t)

⃓⃓⃓
pk(1/

√︁
β(t), z)

⃓⃓⃓
e−z2/2dz ≤ e−1/64α(t)

∫︂
R 

ℓ ∑︂
k=0

⃓⃓⃓
pk(1/

√︁
β(t), z)

⃓⃓⃓
e−z2/4dz.

Here pk is a polynomial of degree k in both variables, so the integral is bounded by a 
constant depending only on ℓ. Since α(t) → 0 and β(t) → ∞ as t → 1, we have the 
lemma. □

Denote by Qϵ the spectral projection for D2 for the interval [ϵ,∞), that is Qϵ =
ϱ[ϵ,∞)(D2). Since I = P[0,ϵ) + Qϵ, the operators Qϵ and δQϵ are transversely smooth 
and bounded, as the other two operators are because of our assumption of transverse 
smoothness. The operators P[0,ϵ), Qϵ, and At all commute as they are functions of D, so

At exp
(︁−(δAt)2

)︁
= P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁

+ QϵAtQϵ exp
(︁−(δAt)2

)︁
.

Recall that δAt is nilpotent, in particular, exp
(︁−(δAt)2

)︁
=

q/2 ∑︂
k=0

(−(δAt)2)k

k! , see [5]. 

Lemma 5.6 gives immediately that ||D2ℓQϵχ
t(D)Qϵ|| → 0 exponentially as t → 1. The 

fact that every element of At contains at least one χt(D), and that all the other terms are 
bounded, save D+ (but RtD

+ is covered by Lemma 5.6), give that ||D2ℓQϵAtQϵ|| → 0
exponentially as t→ 1. Thus, ||D2ℓQϵAtQϵ exp

(︁−(δAt)2
)︁ || → 0 exponentially as t→ 1. 

It follows from the proof of Theorem 2.3.9 and the statement of Theorem 2.3.13, both 
of [24], that the Schwartz kernel of QϵAtQϵ exp

(︁−(δAt)2
)︁ → 0 pointwise uniformly 

exponentially as t→ 1. So,

lim 
t→1

Tr
(︂
QϵAtQϵ exp

(︁−(δAt)2
)︁)︂

= 0,

in 𝒜∗
c(M/F ) and similarly for Q′

ϵA
′
tQ

′
ϵ. Thus we may ignore those terms. Note carefully 

that this is true for fixed ϵ > 0.
For the terms coming from P[0,ϵ)AtP[0,ϵ), note that for t near 1, 2ϱ[0,ϵ)(z) dominates 

ϱ[0,ϵ)χ
tϱ[0,ϵ)(z). This follows from Remark 5.2, since limt→1 χ

t(z) = e−z2/(2(1−t)) in the 
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Schwartz topology, and for t near 1, supz e
−z2/(2(1−t)) = 1. Thus, for ℓ a fixed positive 

integer and for t near 1,

2ϵℓ||ϱ[0,ϵ)(z)||∞ = 2||zℓϱ[0,ϵ)(z)||∞ ≥ ||zℓϱ[0,ϵ)χ
tϱ[0,ϵ)(z)||∞.

The fact that ||δAt|| and || exp
(︁−(δAt)2

)︁ || are bounded and the argument above imply 

that a multiple of tr
(︁
kP[0,ϵ)(x, x)

)︁
dominates || tr

(︂
kP[0,ϵ)AtP[0,ϵ) exp(−(δAt)2)(x, x)

)︂
||. Since 

we can ignore QϵAtQϵ exp
(︁−(δAt)2

)︁
, the Dominated Convergence Theorem implies

lim 
t→1

Tr
(︂
At exp

(︁−(δAt)2
)︁)︂

= lim 
t→1

Tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂

= 

lim 
t→1

∫︂
F

tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂

= 
∫︂
F

lim 
t→1

tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂

,

and similarly for A′
t.

The proof of Theorem 4.2 in [5], which requires that F be Riemannian, shows that, 
under our conditions on the Novikov-Shubin invariants, in degree 2k for 0 ≤ 2k ≤ 2ℓ we 
have,

lim 
t→1

(P[0,ϵ)AtP[0,ϵ)) = P[0,ϵ)π±P0P[0,ϵ) = π±P0,

uniformly pointwise, and similarly for A′
t. So, in degree 2k for 0 ≤ 2k ≤ 2ℓ,∫︂

F

lim 
t→1

tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂

= 
∫︂
F

tr
(︂
π±P0 exp

(︁−(δ(π±P0))2
)︁)︂

= cha(P0).

So, we have proven Theorems 4.3 and 4.5.
It remains to prove Theorem 4.6, and we thus need to compute the limits as t → 0

and t→ 1 of

lim 
s→∞

⎛⎜⎝ ∫︂
T∖Ts

Tr
(︁
At exp(−(δAt)2

)︁ ∧ ωT − 
∫︂

T ′
∖T ′

s

Tr
(︁
A′

t exp(−(δA′
t)2
)︁ ∧ ω′

T ′

⎞⎟⎠ .

For limt→0, we may assume that the two integrands agree on M(0) = VM and M ′(0) =
V ′
M ′ (actually on fixed penumbras). Then we have,

lim 
t→0

lim 
s→∞

⎛⎜⎝ ∫︂
T∖Ts

Tr
(︁
At exp(−(δAt)2

)︁ ∧ ωT − 
∫︂

T ′
∖T ′

s

Tr
(︁
A′

t exp(−(δA′
t)2
)︁)︂ ∧ ω′

T ′

⎞⎟⎠ = 

lim 
t→0

⎛⎜⎝ ∫︂
M∖M(0)

tr
(︁
At exp(−(δAt)2

)︁ ∧ ω − 
∫︂

M ′
∖M ′(0)

tr
(︁
A′

t exp(−(δA′
t)2
)︁)︂ ∧ ω′

⎞⎟⎠ = 
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∫︂
𝒦

AS(DF ) ∧ ω −
∫︂
𝒦′

AS(D′
F ′) ∧ ω′ = 

⟨︄
(

⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(DF ′))

⎤⎦ , (ωT , ω
′
T ′)
⟩︄
.

As above, limt→0 tr
(︁
At exp(−(δAt)2

)︁)︂
= AS(DF ), uniformly pointwise on M , and we 

have the same for A′
t. As we are integrating over compact subsets, we may interchange 

the limt→0 with the integrations.
For limt→1, note that the operators have propagations bounded by cA

√︁
β(t)/α(t) for 

some cA ∈ R+. As they are Φ compatible, we may assume that the two integrands agree 
on TcA(1−t)−1 and T ′

cA(1−t)−1 . Thus,

lim 
t→1

lim 
s→∞

⎛⎜⎝ ∫︂
T∖Ts

Tr
(︁
At exp(−(δAt)2

)︁ ∧ ωT − 
∫︂

T ′
∖T ′

s

Tr
(︁
A′

t exp(−(δA′
t)2
)︁)︂ ∧ ω′

T ′

⎞⎟⎠ = 

lim 
t→1

⎛⎜⎜⎝ ∫︂
T∖TcA(1−t)−1

Tr
(︁
At exp(−(δAt)2

)︁ ∧ ωT − 
∫︂

T ′
∖T ′

cA(1−t)−1

Tr
(︁
A′

t exp(−(δA′
t)2
)︁)︂ ∧ ω′

T ′

⎞⎟⎟⎠ .

Since the Schwartz kernel of QϵAtQϵ exp
(︁−(δAt)2

)︁→ 0 pointwise exponentially as t→
1, the fact that ωT is bounded, and the assumption that M has sub-exponential growth, 
give that

lim 
t→1

⎛⎜⎝ ∫︂
T∖TcA(1−t)−1

Tr
(︂
QϵAtQϵ exp

(︁−(δAt)2
)︁)︂ ∧ ωT

⎞⎟⎠ = 0,

and similarly for Q′
ϵA

′
tQ

′
ϵ. Thus we may ignore those terms.

Next, we have that for t near 1, a multiple of 
∫︂
M

tr
(︁
kP[0,ϵ)

)︁
dominates

||
∫︂
M

tr
(︂
kP[0,ϵ)AtP[0,ϵ) exp(−(δAt)2)

)︂
||.

But this latter equals ||
∫︂
M

tr
(︂
kP[0,ϵ)AtP[0,ϵ) exp(−(δAt)2)P[0,ϵ)

)︂
||, since 

∫︂
M

tr =
∫︂
T

∫︂
F

tr =∫︂
T

Tr, and Tr is a trace. Thus, we need only show that a multiple of

tr
(︁
kP[0,ϵ)(x, x)

)︁
dominates || tr

(︂
kP[0,ϵ)AtP[0,ϵ) exp(−(δAt)2)P[0,ϵ)(x, x)

)︂
||.
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This is due to the fact that, for a smoothing operator A, tr(kA((x, x)) =
∑︁

i⟨A(δxvi), δ
x
vi⟩. 

Here vi is an orthonormal basis of the fiber over the point x, and δxvi is the Dirac delta 
section of the bundle supported at x. Furthermore, everything is well defined on bounded 
geometry manifolds. See, for example, [24] for details of such arguments. As the operators 
we are concerned with are bounded leafwise smoothing, we have,

||⟨P[0,ϵ)AtP[0,ϵ) exp
(︁−(δAt)2

)︁
P[0,ϵ)(δxvi), δ

x
vi⟩||

= ||⟨AtP[0,ϵ) exp
(︁−(δAt)2

)︁
P[0,ϵ)(δxvi), P[0,ϵ)(δxvi)⟩|| ≤ 

||AtP[0,ϵ) exp
(︁−(δAt)2

)︁ || ||P[0,ϵ)(δxvi)||2 = ||AtP[0,ϵ) exp
(︁−(δAt)2

)︁ || ⟨P[0,ϵ)(δxvi), δ
x
vi⟩.

Summing over i, gives the result.
The fact that ||ω|| is bounded and the assumption that 

∫︂
M

tr
(︁
P[0,ϵ)

)︁
dx < ∞, imply 

that ∫︂
M

tr
(︁
P[0,ϵ)

)︁ ||ω|| dx < ∞.

Thus ∫︂
M

|| tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁
(x, x)

)︂
∧ ω|| dx < ∞,

so the integral 
∫︂
M

tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ω converges. Notice that

∫︂
M

tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ω = 

∫︂
T

Tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ωT .

This fact, the fact that we can ignore QϵAtQϵ exp
(︁−(δAt)2

)︁
, and the Dominated Con

vergence Theorem imply,

lim 
t→1

∫︂
T∖TcA(1−t)−1

Tr
(︂
At exp

(︁−(δAt)2
)︁)︂ ∧ ωT

= lim 
t→1

∫︂
T∖TcA(1−t)−1

Tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ωT = 

lim 
t→1

∫︂
T

Tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ωT

=
∫︂
T

lim 
t→1

Tr
(︂
P[0,ϵ)AtP[0,ϵ) exp

(︁−(δAt)2
)︁)︂ ∧ ωT ,
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and similarly for A′
t. The proof of Theorem 4.2 in [5] shows that, as above, under our 

conditions on the Novikov-Shubin invariants in Theorem 4.6,

lim 
t→1

Tr
(︂
At exp

(︁−(δAt)2
)︁)︂ ∧ ωT = Tr

(︂
π±P0 exp

(︁−(δ(π±P0))2
)︁)︂ ∧ ωT ,

and similarly for A′
t. So,

lim 
t→1

⎛⎜⎜⎝ ∫︂
T∖ TcA(1−t)−1

Tr
(︂
At exp

(︁−(δAt)2
)︁)︂ ∧ ωT −

∫︂
T ′

∖ T ′
cA(1−t)−1

Tr
(︂
A′

t exp
(︁−(δA′

t)2
)︁)︂ ∧ ω′

T ′

⎞⎟⎟⎠ =

∫︂
T

Tr
(︂
π±P0 exp

(︁−(δ(π±P0))2
)︁)︂ ∧ ωT − 

∫︂
T ′

Tr
(︂
π′
±P

′
0 exp

(︁−(δ(π′
±P

′
0))2

)︁)︂ ∧ ω′
T ′ = 

⟨(cha(P0), cha(P ′
0)), (ωT , ω

′
T ′)⟩.

That is, ⟨ch Inda(D,D′), [ωT , ω
′
T ′ ]⟩ = ⟨(cha(P0), cha(P ′

0)), (ωT , ω
′
T ′)⟩. So we have proven 

Theorem 4.6.

Remark 5.7. Note that if M , so also M ′, grows exponentially, there are constants c0, cM ∈
R+, so that vol(Mt) ≤ c0e

cM t. This follows from the Bishop-Gromov inequality. Thus, if 
we used Lemma 5.6 as above and integrated over M ∖McA

√︁
β(t)/α(t), we would get an 

estimate of the form,

(Cℓe
−1/64α(t) + ϵℓe−ϵ2β(t)/2)c0ecMcA

√︁
β(t)/α(t).

For the proof to work, we need this to → 0 as t→ 1. Now 
√︁
β(t)/α(t) = β(t) = 1/α(t), 

as t → 1. Thus the two terms must → 0 individually. This only happens if cMcA <

min(ϵ2/2, 1 
64 ). That is, the exponential growth is not too robust.

6. Invertible near infinity operators

In this section, we assume that (M,F ) is as in the first two paragraphs of Section 2.

6.1. Invertibility near infinity

Our new assumption here is that the zero-th order contribution ℛE
F in the Bochner 

formula defined below is strictly positive on M near infinity. As ℛE
F is locally defined, 

this implies that the same for ℛE′
F ′ .

For the leafwise Dirac operator DF = (DL), the canonical operator ℛE
F on sections 

of EM |L is given by

ℛE
F (ϕ) = 

1
2

p ∑︂
i,j=1

ρ(Xi)ρ(Xj)RE
Xi,Xj

(ϕ),
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where RE is the curvature operator of the Hermitian connection ∇F,E on EM |L, 
X1, . . . , Xp is a local oriented orthonormal basis of TL, and ρ(Xi) is the Clifford action 
of Xi. Note that ℛE

F is well defined, smooth, and that it is globally bounded because 
of the assumption of bounded geometry. The operators DL and ℛE

F are related by the 
general leafwise Bochner Identity, [27]

D2
L = (∇F,E)∗∇F,E + ℛE

F . (6.1)

As we work on 𝒢 rather than M , D = r∗(DF ) also satisfies Equation 6.1, which, being 
local, is the same, namely, D2 = ∇∗∇ + r∗(ℛE

F ). Note that in general, if ℛE
F is 

strictly positive near infinity, r∗(ℛE
F ) is not, due to the fact that r is not a proper map 

in general. However, r∗(ℛE
F ) is 𝒢-invariant strictly positive near infinity off some 𝒢

compact subspace, in particular when restricted to M ⊂ 𝒢, since it coincides with ℛE
F

there.
We have the following result from of [8]. Note that it does not need P[0,ϵ] to be 

transversely smooth. It does need it to be transversely measurable, which it is by Lemma 
4.10 of [8].

Theorem 6.2. (Theorem 5.2 of [8]) Assume that F admits a holonomy invariant trans
verse measure Λ. Suppose ℛE

F is strictly positive near infinity. In particular, we may 
assume that κ0 = sup{κ ∈ R | ℛE

F−κ I ≥ 0 on M∖𝒦M} is positive. Then, for 0 ≤ ϵ < κ0,∫︂
M

tr(P[0,ϵ](x, x)) dxF dΛ ≤ 
(κ0 − κ1)
(κ0 − ϵ) 

∫︂
𝒦M

tr(P[0,ϵ](x, x)) dxF dΛ < ∞,

where κ1 = sup{κ ∈ R | ℛE
F − κ I ≥ 0 on M}.

Note that if F is Riemannian, it does admit holonomy invariant transverse measures, 
and we can insure that dx is of the form dxFdΛ.

Proof. The proof of Theorem 5.2 in [8] works equally well here, mutatis mutandis. The 
changes in notation needed are

DE
L → D, kP[0,ϵ](x, x) → kP[0,ϵ](x, x), L→ ˜︁Lx, σL → σx, 

∫︂
L 

→
∫︂
˜︁Lx

,

and so on. □
Proposition 5.5 in [8] still holds here, namely the following.

Proposition 6.3. Suppose the curvature operator ℛE
F is strictly positive on M , that is 

κ1 > 0, so ℛE
F ≥ κ1 I on M . Then for 0 ≤ ϵ < κ1, P[0,ϵ] = 0.
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The relationship with the index bundle is not insured in general, [6], and one needs 
to impose additional spectral assumptions. We have, as in [8], the following immediate 
corollaries of Theorems 4.3, 4.6 and 6.2 which relate the pairings there to pairings with 
the index bundles.

Theorem 6.4. Suppose that (M,F,𝒦M ) and (M ′, F ′,𝒦M ′) are bounded geometry foli
ations which are identified outside the compact subspaces 𝒦M and 𝒦M ′ as before and 
let (ω, ω′) be a ϕ-compatible pair of closed holonomy invariant forms of degree ℓ ≤ q. 
Assume the following:

• M , and so also M ′, has sub-exponential growth, and F and F ′ are Riemannian;
• the leafwise operators P0, P ′

0, P(0,ϵ) and P ′
(0,ϵ) (for ϵ sufficiently small) are trans

versely smooth;
• NS(D) and NS(D′) are greater than ℓ;
• ℛE

F , so also ℛE′
F ′ , is strictly positive near infinity in M and M ′ respectively.

Then

⟨
⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(DF ′)

⎤⎦ , [ωT , ω
′
T ′ ]⟩ = ⟨(ch(P0), ch(P ′

0), (ωT , ω
′
T ′)⟩.

Recall that (cha(P0), cha(P ′
0) is not an element of 𝒜∗

c(M/F,M ′/F ′;ϕ) in general. 
Since AS(DF ) and AS(DF ) are ϕ compatible, AS(DF ) ∧ ω and AS(D′

F ′) ∧ ω are ϕ
compatible, say off the compact subsets ˆ︁𝒦 and ˆ︁𝒦′, and then we have

⟨
⎡⎣∫︂
F

AS(DF ),
∫︂
F ′

AS(DF ′)

⎤⎦ , [ωT , ω
′
T ′ ]⟩ = 

∫︂
ˆ︁𝒦

AS(DF ) ∧ ω − 
∫︂
ˆ︁𝒦′

AS(DF ′) ∧ ω′.

For a single foliated manifold we have the following, compare with [20].

Theorem 6.5. Suppose that E and E′ are two Clifford bundles over the foliated manifold 
(M,F ), which are isomorphic off the compact subset 𝒦M , with associated Dirac operators 
D and D′. Let ω be a bounded closed holonomy invariant transverse form (or current) 
of degree ℓ ≤ q. Suppose that

• M has sub-exponential growth, and F is Riemannian;
• the leafwise operators P0, P ′

0, P(0,ϵ) and P ′
(0,ϵ) (for ϵ sufficiently small) are trans

versely smooth;
• min(NS(D), NS(D′)) is greater than ℓ;
• ℛE

F , and hence also ℛE′
F , is strictly positive near infinity.
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Then, since ch(E) = ch(E′) off 𝒦M ,

⟨ch(Inda(D,D′)), [ωT , ωT ]⟩ =
∫︂

𝒦M

(AS(DF )(ch(E)− ch(E′)) ∧ ω

= ⟨(ch(P0), ch(P ′
0)), (ωT , ωT )⟩.

Remark 6.6. Note that if E1 is a leafwise almost flat bundle (actually a K-theory class) 
on M , then we may twist the operators D and D′ by E1 to get the operators DE1 and 
D′

E1
. Uniform positivity near infinity is preserved when this is done, so we have the 

extension of Theorem 6.5 to DE1 and D′
E1

. Theorem 6.4 also extends in this way if we 
have leafwise almost flat bundles E1 → M and E′

1 → M ′ which are isomorphic near 
infinity.

6.2. Reflective foliations

We now relate our definition of the relative index to the cut-and-paste definition 
considered in Section 4 of [20]. For this paper to be self-contained, we paraphrase from 
[8]. For simplicity, we assume that ω and ω′ are ϕ compatible off 𝒦M and 𝒦′

M ′ .
We say that (M,F,𝒦M ) as above is reflective if there exists a compact submanifold 

H ⊂M such that

𝒦M ⊂ H and ∂H is transverse to F.

So F ′ is also reflective with corresponding H ′. Then there is δ > 0, and a neighborhood 
of ∂H which is diffeomorphic to ∂H × [−δ, δ], and so that F restricted to ∂H × [−δ, δ]
has leaves of the form (L ∩ ∂H)× [−δ, δ]. We may assume that the foliation preserving 
diffeomorphism ϕ extends to ∂H × [−δ, δ], and that ϕ(∂H × [−δ, δ]) is diffeomorphic to 
∂H ′ × [−δ, δ], and that it has the same properties as ∂H × [−δ, δ]. Then we may form 
the compact foliated manifold

ˆ︂M = H ∪ ˆ︁ϕ H ′,

where ˆ︁ϕ : ∂H × [−δ, δ] → ∂H ′ × [−δ, δ] is given by ˆ︁ϕ(x, s) = (ϕ(x),−s). We change 
the orientation of F ′ to the opposite of what it was originally. The resulting foliation 
F ∪ ˆ︁ϕ F ′ is denoted ˆ︁F . Denote by π : ∂H × [−δ, δ] → ∂H the projection and note that 
E |∂H×[−δ,δ] ≃ π∗(E |∂H), and TF |∂H×[−δ,δ] ≃ π∗(TF |∂H). (Note that dim(TF |∂H) =
dim(TF ), not dim(TF )−1 = dimF |∂H .) We may assume that ∇ and DF are preserved 
under the maps (x, s) → (x,−s) and E(x,s) → E(x,−s). This implies that DF and D′

F ′

are identified under the gluing map. In addition, ω and ω′ fit together, giving ˆ︁ω. This 
construction is the exact translation of the Gromov-Lawson construction to foliations.

Finally, denote the leafwise operator on ˆ︁F by ˆ︁D ˆ︁F (and its associated projections by ˆ︁P0 and ˆ︁P(0,ϵ)). Then we have the following extension of Alain Connes’ celebrated index 
theorem, see [13], which is very useful in Section 7.
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Theorem 6.7. With the above notations, suppose that F (and so also F ′) is reflective, but 
not necessarily Riemannian. Suppose further that (C,C ′) is a compatible near infinity 
pair of closed holonomy invariant currents, with associated current ˆ︁C. Then

⟨ch(Inda(D,D′), (C,C ′)⟩ = ⟨ch(Inda( ˆ︁D ˆ︁F )), ˆ︁C⟩.
Proof. We prove the case where (C,C ′) = [ωT , ω

′
T ′ ], since it is notationally simpler. The 

general case is left to the reader. Theorems 4.2 and 5.5 give

⟨ch(Inda(D,D′)), [ωT , ω
′
T ′ ]⟩ = 

∫︂
𝒦M

AS(DF ) ∧ ω −
∫︂

𝒦′
M′

AS(D′
F ′) ∧ ω′,

since the differential forms AS(DF )∧ ω and AS(D′
F ′)∧ ω′ are ϕ compatible off 𝒦M and 

𝒦′
M ′ . Next,∫︂

𝒦M

AS(DF ) ∧ ω −
∫︂

𝒦′
M′

AS(D′
F ′) ∧ ω′ = 

∫︂
H

AS(DF ) ∧ ω −
∫︂
H′

AS(D′
F ′) ∧ ω′ = 

∫︂
ˆ︂M

AS( ˆ︁D ˆ︁F ) ∧ ˆ︁ω = ⟨
∫︂
ˆ︁F

AS( ˆ︁D ˆ︁F ), ˆ︁ω ˆ︁T ⟩ = ⟨ch(Inda( ˆ︁D ˆ︁F )), ˆ︁ω ˆ︁T ⟩.

The last equality is from Theorem 6.2 of [4] applied to the closed foliated manifold 
(ˆ︂M, ˆ︁F ). The others are obvious. □

Note that, since the integrands AS(DF ) ∧ ω and AS(D′
F ′) ∧ ω′ are ϕ compatible off 

𝒦M and 𝒦′
M ′ , this result is actually independent of the choice of the transverse compact 

hypersurface ∂H and for simplicity we may assume that H = 𝒦M .

Theorem 6.8. Suppose that (M,F,D), (M ′, F ′, D′) are as in Theorem 6.7. Suppose fur
thermore that ˆ︁F is Riemannian, that ˆ︁P0 and ˆ︁P(0,ϵ) are transversely smooth, and the 
Novikov-Shubin invariants of ˆ︁D ˆ︁F are greater than ℓ/2, for some 0 ≤ ℓ ≤ q. Then for 
any ℓ homogeneous ϕ-compatible pair (ω, ω′) as before,

⟨ch(Inda(D,D′)), [ωT , ω
′
T ′ ]⟩ = ⟨(ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩.

Moreover, if we impose on (M,F,D) and (M ′, F ′, D′) the assumptions of Theorem 4.6, 
then we have

⟨(ch(P0), ch(P0)), (ωT , ω
′
T ′)⟩ = ⟨(ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩.

This is a consequence of Theorem 6.7 using Theorem 4.1 of [5] to deduce the second 
equality, with ⟨(ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩ being well defined under our assumptions.
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Remark 6.9. This result raises some interesting questions.

1. Suppose that ℛF , so also ℛF ′ , is strictly positive near infinity, then ⟨ch(P0), ωT ⟩ and 
⟨ch(P ′

0)), ω′
T ′⟩ exist. Under what more general conditions than those in Theorems 4.6

and 6.8 does

⟨ch(P0), ωT ⟩ − ⟨ch(P ′
0), ω′

T ′⟩ = ⟨ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩?

2. In general, suppose that ⟨ch(P0), ωT ⟩ − ⟨ch(P ′
0), ω′

T ′⟩ − ⟨ch( ˆ︁P0), ˆ︁ω ˆ︁T ⟩ ̸= 0. What can 
be said about the geometry or topology of (M,F,D), (M ′, F ′, D′), and (ˆ︂M, ˆ︁F , ˆ︁D)?

3. How are the Novikov-Shubin invariants of D and D′ related to those of ˆ︁D?

The previous construction extends to the following more general situation to yield the 
so called higher Φ relative index theorem, see again [20]. In particular, we assume that 
(M,F ) and (M ′, F ′) satisfy the hypotheses of Theorem 4.6, with the following changes. 
In particular, M∖𝒦 = V+∪VΦ and M ′

∖𝒦′ = V ′
+∪V ′

Φ, where the unions are disjoint. For 
this case, Φ = (φ, ϕ) is a bundle morphism from E → VΦ to E′ → V ′

Φ as in Section 2, our 
good covers 𝒰 and 𝒰 ′ are compatible on VΦ and V ′

Φ, and ω and ω′ are ϕ compatible on 
VΦ and V ′

Φ. We assume that F is transverse to ∂VΦ, so F ′ is transverse to ∂V ′
Φ. Finally, 

we assume that ℛE
F and ℛE′

F ′ are strictly positive off 𝒦 and 𝒦′, so we do not need the 
assumptions on the integrals being finite.

Next, consider as above the manifold ˆ︂M = (M ∖VΦ)∪ ˆ︁ϕ (M ′
∖V ′

Φ), with the foliation

ˆ︁F = (F |M∖VΦ) ∪ ˆ︁ϕ (F ′|M ′
∖V ′

Φ
),

where the orientation on ˆ︁F |M∖VΦ is the one on F , and that on ˆ︁F |M ′
∖V ′

Φ
is the opposite 

of the one on F ′. We also have the bundle ˆ︁E → ˆ︂M induced by E and E′, the leafwise 
operator ˆ︁D ˆ︁F induced by DF and D′

F ′ , and the differential form ˆ︁ω induced by ω and ω′.
Because of the positivity off compact subsets, all three operators have finite indices, 

and we have the following.

Theorem 6.10. [The higher foliated Φ-index formula]

⟨ch(Inda( ˆ︁D)), ˆ︁ω ˆ︁T ⟩ = ⟨ch(Inda(D)), ωT ⟩ − ⟨ch(Inda(D′)), ω′
T ′⟩.

The proof follows from our results here, by easily adapting the proof of Theorem 4.35 
of [20].
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7. Applications

7.1. Leafwise PSC and the higher Gromov-Lawson invariant

We further extend the Gromov-Lawson construction in [20], Section 3, see also [27], 
IV.7, to get an invariant for the space of PSC metrics on a foliation F whose tangent 
bundle admits a spin structure. We calculate this invariant for a large collection of spin 
foliations whose Haefliger ˆ︁A genus is zero, so the results of [8] do not apply. Using 
the higher index results here, we show that the space of PSC metrics on each of these 
foliations has infinitely many path connected components, thus verifying our claims that 
higher order index theorems allow for the extension of results for manifolds with non
zero ˆ︁A genus to arbitrary manifolds, and that the higher order terms of the ˆ︁A genus also 
carry geometric information.

For simplicity, we assume that M is compact. Denote by ℳ the space of all smooth 
metrics on F with the C∞ topology, and by ℳ+

sc ⊂ ℳ the subspace of metrics with 
PSC along the leaves.

Scalar curvature and the so called Atiyah-Singer operator are intimately related. 
Recall that 𝒮F is the bundle of spinors along the leaves of F , with the leafwise spin 
connection ∇F . The leafwise Atiyah-Singer operator is the leafwise spin Dirac operator 
D𝒮

F = (D𝒮
L), which acts on 𝒮F , as usual, by

D𝒮
L = 

p ∑︂
i=1 

ρ(Xi)∇F
Xi

,

where X1, . . . , Xp is a local oriented orthonormal basis of TL, and ρ(Xi) is the Clifford 
action of Xi on the bundle 𝒮F |L. Denote by κ the leafwise scalar curvature of F , that is

κ = −
p ∑︂

i,j=1
⟨RXi,Xj

(Xi), Xj⟩,

where R is the curvature operator associated to the metric on the leaves of F . In this 
case the Bochner Identity, Equation 6.1, is quite simple, see [27], namely

(D𝒮
L)2 = (∇F )∗∇F + 

1
4κ. (7.1)

Consider the foliation FR on MR = M × R with leaves LR = L × R and with the 
leafwise volume form dxF ×dt. If 𝒰 is a good cover of M , 𝒰R = {(Un

i , T
n
i ) = (Ui× (3n−

2, 3n + 2), Ti)| (Ui, Ti) ∈ 𝒰 , n ∈ Z} is a good cover of MR. Denote by π : MR → M the 
projection. Suppose that g0, g1 ∈ ℳ+

sc, and (gt)t∈[0,1] is a smooth family in ℳ from g0
to g1. On FR, set G = g0 + dt2 for t ≤ 0, G = g1 + dt2 for t ≥ 1, and G = gt + dt2 for 
0 < t < 1.
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The leafwise spin Dirac operator D𝒮
F extends to the leafwise spin Dirac operator DR

on FR. Following Gromov-Lawson, [20], Equation (3.13), we set

i(g0, g1) = ch(Inda(DR)) ∈ H∗
c (MR/FR). (7.2)

Theorem 7.3. i(g0, g1) depends only on g0 and g1. If i(g0, g1) ̸= 0, then g0 and g1 are 
not in the same path connected component of ℳ+

sc.

Proof. Suppose that gt and ˆ︁gt are two smooth families of metrics in ℳ from g0 to g1, 
with associated metrics G and ˆ︁G and associated operators DR and ˆ︁DR. A byproduct of 

Theorem 4.2 is that i(g0, g1) =

⎡⎣∫︂
FR

ˆ︁A(TFR, G)

⎤⎦, where ˆ︁A(TFR, G) is the Atiyah-Singer 

characteristic differential form, the so-called A-hat form of F , on MR associated to the 
metric G, and similarly for ˆ︁G. Thus we have

i(g0, g1)(G)− i(g0, g1)( ˆ︁G) =

⎡⎣∫︂
FR

( ˆ︁A(TFR, G)− ˆ︁A(TFR, ˆ︁G))

⎤⎦

=

⎡⎢⎣∫︂
F 0

R

( ˆ︁A(TFR, G)− ˆ︁A(TFR, ˆ︁G))

⎤⎥⎦ ,

where F 0
R is the foliation on 

⋃︁
i U

0
i . The forms ˆ︁A(TFR, G) and ˆ︁A(TFR, ˆ︁G) are locally 

computable in terms of their associated curvatures. Thus, off the compact subset M ×
[0, 1], they agree, which justifies the second equality. By abuse of notation, we may write∫︂

F 0
R

( ˆ︁A(TFR, G)− ˆ︁A(TFR, ˆ︁G)) = 
∫︂

F×[0,1]

( ˆ︁A(TFR, G)− ˆ︁A(TFR, ˆ︁G)).

Since the cohomology classes of the two forms are the same, ˆ︁A(TFR, G) − ˆ︁A(TFR, ˆ︁G)
is an exact form dM×RΨ, which is locally computable in terms of the curvatures and 
connections. In particular, Ψ = 0 on the closure of open sets where the connections agree. 
So off M × (0, 1), Ψ is zero, since the connections agree there. Thus∫︂

F 0
R

( ˆ︁A(TFR, G)− ˆ︁A(TFR, ˆ︁G)) = 
∫︂

F×[0,1]

dM×RΨ = dH

∫︂
F×[0,1]

Ψ,

and i(g0, g1)(G) − i(g0, g1)( ˆ︁G) = 0 in H∗
c (MR/FR).

For the second part, assume that g0 and g1 are in the same path connected component 
of ℳ+

sc, and that gt, is a smooth family of metrics in ℳ+
sc from g0 to g1. Then, after 

replacing gt with a suitable reparametrization, a so-called ``warped product'' metric, G
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restricted to each leaf of FR will have PSC, see [19], p.184, and since the family of metrics 
is smooth, it is strictly positive. Then, Proposition 6.3 gives that PR

[0,ϵ] = 0, for some 
positive ϵ, so the Novikov -Shubin invariants are infinite and Remark 4.4 (1) gives that 
i(g0, g1) = 0. □
Remark 7.4. Theorem 7.3 remains true if we consider concordance classes of PSC metrics, 
which a priori is stronger. Recall that leafwise metrics are concordant if there is a metric 
G on TFR so that it agrees with g0 × dt2 near −∞ and with g1 × dt2 near +∞. The 
conclusion is that if i(g0, g1) ̸= 0, then g0 and g1 are not in the same concordance class 
of metrics in ℳ+

sc. The proof being essentially the same.

Remark 7.5. We could also extend this theory to concordance classes of leafwise flat con
nections ∇ on an auxiliary bundle E. The invariant would become i((g0,∇0), (g1,∇1)). 
See [3]. The theorem would then be that if g0 and g1 are concordant, and ∇0 and ∇1
can be joined by leafwise flat connections, then i((g0,∇0), (g1,∇1)) = 0.

Next, we have a corollary of Theorem 6.10.

Corollary 7.6. Suppose g0, g1, g2 ∈ℳ+
sc. Then

i(g0, g1) + i(g1, g2) = i(g0, g2), so i(g0, g1) + i(g1, g2) + i(g2, g0) = 0.

Proof. In the notation of Theorem 6.10, take (M,F ), (M ′, F ′) and (ˆ︂M, ˆ︁F ) to be 
(MR, FR), 𝒦 = 𝒦′ = M × [0, 1], VΦ = V ′

Φ = M × (−∞, 0), and V+ = V ′
+ = M × (1,∞). 

To compute i(gi, gj) take

Gi,j = gi + dt2 for t ∈ (−∞, 0], and Gi,j = gj + dt2 for t ∈ [1,∞).

For the first, we have

i(g0, g1)− i(g0, g2) = ch(Inda(DR(G0,1)))− ch(Inda(DR(G0,2))) =

ch(Inda(DR(G2,1)) = i(g2, g1) = −i(g1, g2).

The second equality is from Theorem 6.10, where ˆ︁D ˆ︁E
L = DR(G2,1), DE

L = DR(G0,1), and 
DE′

L = DR(G0,2).
The second equation is then obvious, as i(g0, g2) = −i(g2, g0). □
Now suppose that M is the boundary of a compact manifold W with a spin foliation ˆ︁F which is transverse to M , and which restricts to F there. Extend ˆ︁F as above to 

W ∪M (M × [0,∞)). Given a metric g of PSC on F , extend it to a complete leafwise 
metric ˆ︁g on ˆ︁F by making it g + dt2 on M × [−ϵ,∞), where M × [−ϵ, 0] is a collar 
neighborhood of M ⊂W , and extending it arbitrarily over the rest of the interior of W .
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Definition 7.7. i(g,W ) = ch(Inda( ˆ︁D ˆ︁F )).

Note that Theorem 4.2 and the proof of Theorem 7.3, show that i(g,W ) does not 
depend on the extension of g over W . It does however depend on W in general.

In this situation, we have the following two corollaries of Theorem 4.2.

Corollary 7.8. Suppose that g0, g1 ∈ℳ+
sc. Then

i(g0, g1) = i(g1,W ) − i(g0,W ),

as Haefliger classes. In addition, if ˆ︁g0 has PSC, then i(g0,W ) = 0.

The reader may wonder how the classes in the first equality can be compared, since 
they are on different manifolds. This is explained below.

Proof. Consider the following

• (MR, FR) with the metric G0,1 above, giving i(g0, g1).
• M0 = W0 ∪M (M × [0,∞)) with the metric g0 + dt2 on M × [0,∞), and the metric ˆ︁g0 on W0 = W . Take the opposite orientation on M0 by reversing the orientations 

on [0,∞) and W0, so this gives −i(g0,W ).
• M1 = W1 ∪M (M × [0,∞)) with the metric G0,1 restricted to M × [0,∞), and the 

metric ˆ︁g0 on W1 = W . As the metric on M × [1,∞) is g1 × dt2, this gives i(g1,W ).

The meaning of the first equality is that representatives of the classes on M0 ∪̇M1 ∖

W0 ∪̇W1 equal the representative on MR, while what remains on W0 and W1 cancel. It 
is useful to have a picture of the situation. The arrows indicate the orientations.

i(g0, g1) : MR · · · g0 + dt2−→ gt−→ g1 + dt2−→ · · ·
M × {0} M × {1}

i(g1,W ) : M1 ˆ︁g0−→
W1 gt−→

g1 + dt2

−→
· · ·

−i(g0,W ) : M0 ˆ︁g0 W0←−
g0 + dt2

←−
· · ·

We may use the ˆ︁A-forms associated to the terms, since they are arbitrarily close to 
differential forms in the Haefliger classes. We indicate them by ˆ︁A(MR), ˆ︁A(M0), and ˆ︁A(M1). Then,

• ˆ︁A(M1) restricted to M1 ∖W1 equals ˆ︁A(MR) restricted to M × (0,∞);
• ˆ︁A(M0) restricted to M0 ∖W0 equals ˆ︁A(MR) restricted to M × (−∞, 0];
• ˆ︁A(M0) restricted to W0 cancels ˆ︁A(M1) restricted to W1.
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For the second statement, Proposition 6.3 gives that there is ϵ > 0 so that P[0,ϵ] = 0. 
Then Theorem 4.5 gives i(g0,W ) = 0. □
Corollary 7.9. Suppose that ˆ︁g0 has PSC, and that g1 extends to ˆ︁g1 with PSC over a 
compact manifold ˆ︂W1 with the spin foliation ˆ︁F1 extending F . Set

X(0,1) = W ∪M (M × [0, 1]) ∪M
ˆ︂W1

with the metric ˆ︁G(0,1) which is ˆ︁g0 on W , G0,1 on M × [0, 1] and ˆ︁g1 on ˆ︂W1. Denote the 
leafwise operator on the foliation F(0,1) of X(0,1) by D(0,1). Then

i(g0, g1) = ch(Inda(D(0,1))) = 
∫︂

F(0,1)

ˆ︁A(TF(0,1)).

Proof. For i(g0, g1) = ch(Inda(D(0,1))), set ˆ︂M1 = ˆ︂W1 ∪M (M × [0,∞)) with the metric 

g1 +dt2 on M × [0,∞), and the metric ˆ︁g1 on ˆ︂W1, so the metric has PSC everywhere and 
i(g1,ˆ︂W1) = 0. Then, we have,

i(g0, g1) = i(g1,W )− i(g0,W )) = i(g1,W ) = i(g1,W )− i(g1,ˆ︂W1) = ch(Inda(D(0,1))).

The first three equalities are obvious. For the last, proceed as in the first part, noting 
that

• ˆ︁A(M1) restricted to W1 ∪M (M × [0, 1]) equals ˆ︁A(X(0,1)) restricted to W ∪M (M ×
[0, 1]);

• - ˆ︁A(ˆ︂M1) restricted to ˆ︂W1 cancels ˆ︁A(X(0,1)) restricted to ˆ︂W1;
• - ˆ︁A(ˆ︂M1) restricted to ˆ︂M1 ∖ˆ︂W1 cancels ˆ︁A(M1) restricted to M1 ∖ (M1 × (1,∞)).

Finally, the fact that ch(Inda(D(0,1))) =
∫︂

F(0,1)

ˆ︁A(TF(0,1)) is a result from [4]. □

7.2. Some examples

To finish, we construct a large collection of spin foliations whose space of leafwise PSC 
metrics has infinitely many path connected components.

Suppose we have the following data.

• A closed foliated manifold (M,F ), with F spin and 
∫︂
F

ˆ︁A(TF ) ̸= 0 in H∗
c (M/F ).

• A closed manifold S and a family (gi) of PSC metrics on it, and compact spin 
manifolds Xi with boundary S and metric ˆ︁gi, which is gi× dt2 in a neighborhood of 
S, and ˆ︁gi also has PSC. Set
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X(i,j) = Xi ∪ (S × [0, 1]) ∪Xj ,

where the metric on S × [0, 1] is gt × dt2, and gt is a path of metrics from gi to gj . 
Assume further that i(gi, gj) is non-zero.

Proposition 7.10. The foliated manifold (M × S, TF × TS) has a family of PSC metrics 
(𝔤i), so that for any i ̸= j, 𝔤i and 𝔤j do not belong to the same path component of the 
space of PSC metrics on TF × TS.

Proof. Since M is compact, F admits a metric g of bounded scalar curvature. Set 𝔤i =
g × cigi, where ci ∈ (0,∞) is such that 𝔤i has PSC. For the manifold M ×X(i,j), with 
the foliation F ×X(i,j), Corollary 7.9 gives

i(𝔤i, 𝔤j) = 
∫︂

F×X(i,j)

ˆ︁A(TF × TX(i,j)).

If 𝔤i and 𝔤j were in the same path component of the space of PSC metrics on TF ×TS, 
then we would have i(𝔤i, 𝔤j) = 0. However, if i ̸= j, then∫︂

F×X(i,j)

ˆ︁A(TF × TX(i,j)) =
∫︂

F×X(i,j)

ˆ︁A(TF ) ˆ︁A(TX(i,j)) =
∫︂
F

ˆ︁A(TF )
∫︂

X(i,j)

ˆ︁A(TX(i,j))

= i(𝔤i, 𝔤j)
∫︂
F

ˆ︁A(TF ) ̸= 0. □

Here are examples of this type.

Example 7.11. We adapt Example 1 of [22]. In particular, let G = SL2R × · · · × SL2R

(q copies) and K = SO2 × · · · × SO2 (q copies). G acts naturally on R2q
∖ {0} and is 

well known to contain subgroups Γ with N = Γ\G/K compact, (in fact a product of q
surfaces of higher genus). Set

M = Γ\G×K ((R2q
∖ {0})/Z) ≃ Γ\G×K (S2q−1 × S1),

where n ∈ Z acts on R2q
∖ {0} by n · z = enz.

M has two transverse foliations, F which is given by the fibers S2q−1 × S1 of the 
fibration M → N , and a transverse foliation coming from the foliation τ of Example 
1 of [22]. More precisely, τ is defined on the vector bundle Γ\G ×K R2q, and the zero 
section is a leaf of it. In addition, the action of Z preserves τ , fixing the zero section, so 
it descends to a foliation on M , also denoted τ .

We work with F , noting that TF is orientable and spin since R2q − {0} has these 
structures and the actions of K and Z preserve them. It also happens to admit a met



M.T. Benameur, J.L. Heitsch / Journal of Functional Analysis 289 (2025) 111098 47

ric with PSC, namely the product of the standard metrics on S2q−1 and S1, which is 
preserved by the action of K. The following proposition is proven in the appendix.

Proposition 7.12. 
∫︂
F

ˆ︁A(TF ) is a nowhere zero 2q form on N . In particular, there is a 

non-zero constant Cq so that 
∫︂
N

∫︂
F

ˆ︁A(TF ) = Cq vol(N).

Thus, 
∫︂
F

ˆ︁A(TF ) ̸= 0 in H∗
c (M/F ). Note that this also shows that the Haefliger ˆ︁A

genus of TF , i.e. 

⎡⎣∫︂
F

ˆ︁A(TF )

⎤⎦0

∈ H0
c (M/F ), is zero, which is why we cannot use the 

results of [8] here.
In [11], Carr constructs examples of ``exotic'' PSC metrics 𝔤i, i ∈ Z+ on S4k−1, for 

k > 1, and compact Riemannian 4k dimensional spin manifolds Xi with boundary S4k−1, 
so that the metric ˆ︁𝔤i on Xi is 𝔤i× dt2 in a neighborhood of S4k−1, and ˆ︁𝔤i also has PSC. 
Set

X(i,j) = Xi ∪ (S4k−1 × [0, 1]) ∪Xj ,

where the metric on S4k−1 × [0, 1] is 𝔤t × dt2, and 𝔤t is a path of metrics from 𝔤i to 
𝔤j . These examples have the property that i(𝔤i, 𝔤j) ̸= 0. Thus we have all the elements 
required to apply Proposition 7.10

Remark 7.13. Note that the calculations in the examples in [22] can be used to provide 
examples associated to the groups G = SL2n1R× · · ·×SL2nr

R, and K = SO2n1 × · · ·×
SO2nr

, and G = SL2n1R × · · · × SL2nr
R × R and K = SO2n1 × · · · × SO2nr

× Z. We 
leave the details and further extensions to the reader.

The next example is an easy corollary of the Kreck-Stolz result from [26][Corollary 
2.15].

Proposition 7.14. Suppose that (M,F ) is a closed foliated manifold with F spin. Let Y be 
a closed connected spin manifold of dimension 4k− 1 > 3 with vanishing real Pontrjagin 
classes and such that H1(Y ;Z/2) = 0. If Y admits a PSC metric, then the foliated 
manifold (M × Y, TF × TY ) admits a sequence (𝔤i) of leafwise PSC metrics such that 
for any i ̸= j, 𝔤i and 𝔤j are not in the same path component of PSC metrics on TF×TY .

Notice that if Y is for instance simply connected, then it always admits a metric of 
PSC by [31].
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Proof. In [26], Kreck and Stolz produce an infinite sequence gi of PSC metrics on Y such 
that for any i ̸= j, the Gromov-Lawson invariant iGL(gi, gj) ̸= 0. Note that iGL(gi, gj) is 
the difference of the dimensions of the positive and negative parts of the kernel of DR on 
the manifold YR. Thus, there is a non-trivial L2 element ζ in the kernel of DR. On the 
foliated manifold (M ×Y, TF ×TY ) there is the sequence of PSC metrics (𝔤i), where 𝔤i
is as in Proposition 7.10. For i ̸= j, these metrics are not in the same path component 
of leafwise PSC metrics. For if they were, then the foliation TF ×TYR, would have PSC 
everywhere. So, by Proposition 6.3, there would not be any non-trivial L2 elements in 
the kernel of DR. But this is patently false as (0, ζ) is such a non-trivial L2 element. □

We finish with some cogent comments by the referee. It would be interesting to know if, 
in any of the examples above, the restrictions of the 𝔤i to each leaf are pairwise isotopic. 
This would rule out the possibility of showing non-isotopy by restricting to a single leaf 
and applying results from the non-foliation case. A particularly interesting case is that 
when q = 2 in Example 7.11 where the fibers are S3 × S1. Very little is known about 
the topology of PSC metrics on 4-manifolds. It is an open question whether the space of 
PSC metrics on S4 is path connected and the status is likely the same on S3 × S1.

Appendix A. Proof of Proposition 7.12

We follow the proof of Theorem 5.4 in [22]. Denote by (x1, y1, .., xq, yq) the coordinates 
on R2q. Choose nonzero numbers λ1, ...λq ∈ R, and set

Xλ = 
q∑︂

i=1 
λi(xi∂/∂xi + yi∂/ ∂yi).

This vector field has an isolated singularity at the origin and it commutes with the actions 
of K and Z on R2q

∖ {0}. Thus it induces a nowhere zero vector field also denoted Xλ

on the bundle M .
Denote by ωλ the one-form on R2q

∖ {0} defined by

ωλ = 
q∑︂

i=1 

λi

x2
i + y2

i

(xidxi + yidyi).

Note carefully that this is different from the ωλ of [22]. This change is necessary so that 
ωλ is invariant under the action of Z. Note also that dωλ = 0 still holds. The actions of 
K and Z on R2q

∖ {0} preserve ωλ, so it induces a one-form ωλ on M.
Let S be the sphere bundle in ˆ︂M = Γ\G×K ((R2q

∖ {0})) given by the image of

{(g, (x1, y1, ..., xq, yq)) ∈ G× (R2q
∖ {0}) | 

q∑︂
i=1 

λi(x2
i + y2

i ) = 1}.

S is invariant under Γ and K so it is well defined. Set
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S0 = S = 0 · S, and S1 = 1 · S.

Note that the condition on S1 is 
∑︁q

i=1 λi(x2
i + y2

i ) = e2, so its radius is e. Then we may 
write,

M = Γ\G×K (S2q−1 × [1, e]),

where we identify the boundary components, S0 and S1, on the right, and we may do 
our computations, as in [22], using the coordinates on G× S2q−1 × (1, e).

Denote by θ the unique basic connection (for the foliation τ !) on T (S2q−1 × (1, e)), 
which is the normal bundle of τ , whose covariant derivative ∇ satisfies, for all Y ∈
T (S2q−1 × (1, e)),

∇Y ∂/∂xi = ωλ(Y )[Xλ, ∂/∂xi], and ∇Y ∂/∂yi = ωλ(Y )[Xλ, ∂/∂yi].

The proof in [22] works just as well here to show that θ is well defined.
The computation of the curvature Ω of ∇ proceeds just as in [22]. In particular, we 

may assume that we have a neighborhood U in N whose inverse image in M is of the 
form U × (S2q−1× (1, e)), and coordinates on it, so that the local form of Ω with respect 
to the local basis ∂/∂x1, ∂/∂y1, ...∂/∂xq, ∂/∂yq of T (S2q−1 × (1, e)), is given by

Ω2i−1
2i−1 = Ω2i

2i = λid(λδ),

and all other terms are zero. Here, for i = 1, ..., q,

• λδ = λ1δ1 + · · ·+ λqδq;
• δi = xiyiωi + 1

2 (x2
i − y2

i )γi;
• ω1, γ1, ..., ωq, γq is a basis of the one-forms on U with dωi = −ωi ∧ γi and dγi = 0.

Recall that ˆ︁A(ξ1, ..., ξ2q) =
2q ∏︂
j=1

ξj/2 
sinh(ξj/2) . We want to compute

∫︂
F

ˆ︁A(T (S2p−1 × S1)) =
∫︂

S2q−1×S1

ˆ︁A(T (S2p−1 × S1)) =
∫︂

S2q−1×(1,e)

ˆ︁A(Ω).

As (dδi)3 = 0 and (dδi)2 = 2(x2
i + yi)2dxi ∧ dyi ∧ ωi ∧ γi, the only term of ˆ︁A(Ω) which 

will be non-zero when integrated over F is, just as in [22],

ˆ︁A2q(Ω) = ˆ︁A2q(λ1, λ1, ..., λq, λq)(d(λδ))2q

= ˆ︁A2q(λ1, λ1, ..., λq, λq)(2q)!
q∏︂

i=1
(λ2

i (x2
i + y2

i )dxi ∧ dyi ∧ ωi ∧ γi,
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where ˆ︁A2q(ξ1, ..., ξ2q) is the term in ˆ︁A(ξ1, ..., ξ2q) of degree 2q. Thus,∫︂
S2q−1×(1,e)

ˆ︁A2q(Ω) =

ˆ︁A2q(λ1, λ1, ..., λq, λq)

⎡⎢⎣(2q)!
∫︂

S2q−1×(1,e)

q∏︂
i=1

(λ2
i (x2

i + y2
i )dxi ∧ dyi)

⎤⎥⎦ q∏︂
i=1

(ωi ∧ γi) = 

πq(e4q − 1) ˆ︁A2q(λ1, λ1, ..., λq, λq)
(λ1 · · ·λq)2

q∏︂
i=1

(ωi ∧ γi),

by Lemma 5.8 of [22], which is a nowhere zero 2q form on N . Note that ˆ︁A2q(λ1, λ1, ..., λq, 
λq) is a non-zero constant times (λ1 · · ·λq)2. Thus, there is a non-zero constant Cq so 
that∫︂

N

∫︂
S2q−1×(1,e)

ˆ︁A(Ω) =
∫︂
N

∫︂
F

ˆ︁A(TF ) = Cq vol(N).

Data availability

No data was used for the research described in the article.
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