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from [8]. In particular, these results confirm the well-known
idea that important geometric information of foliations is
embodied in the higher terms of the A genus.
© 2025 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

In this paper we continue our program of extending the groundbreaking relative index
theorems of Gromov-Lawson, especially Theorem 4.18, [20], to Dirac operators defined
along the leaves of foliations of non-compact complete Riemannian manifolds. Their
results have played a fundamental role in the development and understanding of the
existence and non-existence of metrics with positive scalar curvature (PSC), as well as
the structure of spaces of such metrics. It is an essential tool for the extension of results
for compact manifolds to non-compact manifolds.

In [8], we extended the Gromov-Lawson theorem to foliations admitting invariant
transverse measures, and crucial requirements for the applications were that the foliation
admits a holonomy invariant measure, and that the measured A genus of the foliation
be non-zero. In this paper, we dispense with both these requirements and completely
solve the general case. We obtain results for all the terms of the Atiyah-Singer charac-
teristic forms associated with the Dirac operators, especially the higher order terms of
the Connes-Chern character of the relative analytic index, as well as the higher order
terms of the Connes-Chern characters of their “index bundles”. We also construct a large
collection of spin foliations, with trivial zero-th order Haefliger A genus, whose spaces
of leafwise PSC metrics have infinitely many path connected components. In particular,
these results confirm the idea that the higher order terms of the A genus carry important
geometric information.
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As in [8], our work is in the spirit of the transition from the Atiyah-Singer index
theorem, [2], to Connes’ index theorem for foliations, [13—-15]. In order to overcome
the problems of dealing with non-compact manifolds, we assume that our objects have
bounded geometry. Our higher relative index theorem then provides the expected for-
mula in an appropriate relative Haefliger cohomology for pairs of foliations which are
isomorphic near infinity, equating the higher relative analytical index constructed out
of parametrics with the higher relative A-hat forms. When the foliations are top di-
mensional, we recover the Gromov-Lawson theory [20,27]. When the foliated manifolds
are compact (without boundary), we recover the cohomological version of the Connes-
Skandalis index theorem [15], as developed in [4] using Haefliger cohomology. When the
foliations are not top-dimensional, any pair of Haefliger transverse currents which are
compatible near infinity lead to scalar higher relative index formulas. We thus recover
the results of our previous paper [8] by pairing our higher relative index formula with a
compatible pair of holonomy invariant transverse measures.

As is well known and already observed for closed foliated manifolds, see for instance
[5,6,25], despite the top-dimensional case, further conditions are required to relate the
higher analytic index of leafwise Dirac operators to their spectral index, say the Connes-
Chern characters of the leafwise projections to their kernels, the so-called index bundle.
The examples in [6] show that such restrictions are necessary. Assuming, as in [5], that
the spectral projections of the leafwise Dirac operators are sufficiently sparse near zero
and that the foliations are Riemannian, we prove our next higher index theorem which
now involves the relative spectral index. This theorem holds only in the absolute Hae-
fliger cohomologies since the pair of index bundles is in general not compatible near
infinity. This incompatibility can prevent the pairing of the index bundles with compat-
ible near infinity Haefliger currents from being well defined. Finally, we show that when
the ambient manifolds have sub-exponential growth, such pairings are miraculously well
defined as soon as the Dirac operators are invertible near infinity, and they equal the
pairing with the higher relative A-hat forms. The invertibility near infinity is the usual
Gromov-Lawson condition involving the zero-th order term of the Bochner formula. It
occurs for instance when the foliations are spin with leafwise PSC near infinity, compare
with [20].

Notational details are given in the next section.

Denote by (M, F) a foliated manifold where M is a non-compact complete Riemannian
manifold and F' is an oriented foliation (with the induced metric) of M. We assume
that both M and F' are of bounded geometry and that the holonomy groupoid of F
is Hausdorff. We will sometimes assume that F' is Riemannian, and when we do, we
will explicitly point it out in the text. The general case will be addressed in [9]. We
assume that we have a Clifford bundle Ey; — M over the Clifford algebra of the co-
tangent bundle to F, along with a Hermitian connection V¥ compatible with Clifford
multiplication. This determines a leafwise generalized Dirac operator, denoted Dp. We
assume that we have a second foliated manifold (M’, F’) with the same structures. We
further assume that there are compact subspaces Ky = M \ Vi and Ky = M/ NV,



4 M.T. Benameur, J.L. Heitsch / Journal of Functional Analysis 289 (2025) 111098

so that the situations on Vj; and Vj,, are identical via a smooth isometry ¢. These are
the usual Gromov-Lawson relative data. Note that in our case, the “bad set” restricted
to a leaf need not be compact as in the Gromov-Lawson case. Only the global aggregate
of all such leafwise subsets needs to be compact as a subset of M.

In [8], we worked on the ambient manifolds M and M’. Here we work on their holon-
omy groupoids G and G’, with their canonical foliations F;s and F., as we did in [5]. We
lift everything to G using the range map r : G — M, which is a covering map from the
leaves of F, to those of I, and similarly for M’. In particular, we have the G invariant
leafwise Dirac operator D for the foliation Fy, and similarly D’ for F.

Recall that for a good cover U = {(U;,T;)} of M, [24], by foliation charts U; with
local complete transversals T; C U;, the Haefliger forms associated to F' are the bounded
smooth differential forms on II7; which have compact support in each T;, modulo
forms minus their holonomy images. The (absolute) Haefliger cohomology of F', denoted
H}(M/F), is then the associated de Rham cohomology, and is independent of the choice
of good cover, [21]. Also recall that there is an integration over the leaves map from

forms on M to Haefliger forms, denoted / , which induces a map on cohomology. For

F
the foliation given by the fibers of a bundle M — B, the Haefliger cohomology reduces

to the cohomology of the base and / is the classical integration over the fibers map. See

F
again [21] for more details.

The receptacle for our relative index formulas will be a relative version of Haefliger
cohomology that we denote by HX(M/F,M'/F’;p). This is the cohomology of pairs of
Haefliger forms which agree near infinity (that is, on T; far enough away from KCp; and
similarly for the T7), again modulo pairs of forms minus their holonomy images which
also agree near infinity.

Denote by AS(Dp) the Atiyah-Singer characteristic differential form, associated with
the above yp-compatible data, for Dg, and similarly for Dg.,. These differential forms
agree near infinity on M and M’. The relative A-hat genus of the compatible pair
(D, D), alternatively called the relative topological index, is

Ind,(D, D') = / AS(Dp), / AS(Dy))| € H:(M/F,M'/F'; ).

F F

Using parametrics, we define a relative analytical index class Ind, (D, D’) in the appro-
priate K-theory group, and its Connes-Chern character,

ch(Ind,(D,D")) € Hi(M/F,M'/F';p).

Our first result is



M.T. Benameur, J.L. Heitsch / Journal of Functional Analysis 289 (2025) 111098 5

Theorem 4.2. For the (M, F), (M',F'), D and D' as above,
ch(Ind, (D, D")) = Indy(D,D") in HX(M/F,M'/F’; ).

So, pairing with any compatible near infinity pair (C,C") of closed Haefliger currents
yields a (higher) scalar relative index formula. Such pairings will be denoted (-, -), e.g.
(ch(Ind, (D, D)), (C,C")).

An important application of this theorem is to pairs of “reflective” foliations, which we
consider in Section 6. They can be “cut and pasted” to get a compact foliated manifold
M\, with the foliation F and operator 1513 Given C and C’ as above, denote by C the
current they determine on M. Then we have the following extension of the Gromov-
Lawson Relative Index Theorem, see [20], which is most useful in Section 7, where we
construct our examples.

Theorem 6.7. Suppose that F' (and so also F') is reflective. Then
(ch(Indy (D, D), (C,C")) = (ch(Inda(Dp)), C).

The RHS of this index formula can then be computed using the classical higher co-
homological index theorem for foliations of closed manifolds [17,4]. For top dimensional
foliations, say when TF = TM and TF' = TM’, the previous two theorems reduce to
the classical Gromov-Lawson relative index theorems.

Despite the top dimensional case, it is well known that the higher index is not easily
related with the so-called index bundle, i.e. the Chern character of the “kernel minus
cokernel superbundle”. Constraints on the spectral distributions, as well as on the geom-
etry near infinity are necessary, see for instance [6]. Denote by Py the leafwise spectral
projection to the kernel of D?. In general P, is not transversely smooth (although it is
always leafwise smooth), and if not, we cannot even define its Connes-Chern character in
our Haefliger cohomology without perturbing the operator. There are though interesting
classes of foliations and leafwise Dirac-type operators whose kernel superbundle P, is
transversely smooth, and in this case, we get a well defined spectral index class

ch(Py) € HI(M/F),

and similarly for P, see [5].

Denote by P ) the leafwise spectral projection for D? for the interval (0,¢). The
Novikov-Shubin invariants NS(D) of D are a measure of the density of the image of
Po,e)- The larger NS(D) is, the sparser the image of P ) is as € — 0.

We also have the natural map (7 x n') : HY(M/F,M'/F';¢) — H(M/F) x
H:(M'/F'), and with it the Riemannian Foliation Relative Index Bundle Theorem.

Theorem 4.3. Fiz 0 < ¢ < q/2, where q is the codimension of F and F'. Assume that:
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o the foliations F' and F' are Riemannian;

o the leafwise operators Py, Py, P,y and P/0 o (for € sufficiently small) are trans-
versely smooth;

e NS(D) and NS(D’) are greater than £.

Then, for 0 < k < ¢, we have in H?*(M/F) x H**(M'/F")
(m x ') ch¥(Ind, (D, D')) = (ch*(Ind, (D)), ch*(Ind,(D’))) = (ch*(Py),ch*(F))).

For Riemannian foliations, important examples of compatible near infinity pairs of
closed Haefliger currents are given by closed bounded holonomy invariant transverse
differential forms w on M and w’ on M’ which agree near infinity. These determine
closed bounded Haefliger forms on T, denoted wy and w/., which agree near infinity.
Denote by dz the global volume form on M.

We then have the Higher Relative Index Pairing Theorem.

Theorem 4.6. In addition to the assumptions in Theorem 4.3, assume that for € suffi-

ciently small, /tr(P[O’E))dx < o0 and /tr(P[’O)e))dx < 00, and that M, and so also M’,

has sub-exponential growth. Then, for any w € C®(AT"2v*) and W' € C®(NT=2FY'™)
(0 <k <) as above,

/Ch(PO) Awr and /ch(Pé) A Wh. are well defined complex numbers,

T T

and

/ch(Po)/\wT - /ch(Po Ay = / /AS(DF,)  Jwr, wi]).

T T F F’

In Section 6, we show that the finite integral assumptions in Theorem 4.6 are satisfied
when D (and hence also Dp) is invertible near infinity, i.e. when the zeroth order
differential operator R% in the associated Bochner Identity

D} =V*V +RE,

is uniformly positive near infinity on M. The sub-exponential growth condition can be
extended to exponential growth provided it is not too robust. See Remark 5.7

For a single foliated manifold with a pair of compatible near infinity leafwise Dirac
operators, we have the following generalization of a classical result of Gromov-Lawson
[20], compare with Theorem 6.5 in [27].
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Theorem 6.5. Suppose that E and E’ are two Clifford bundles over the foliated manifold
(M, F), which are isomorphic off the compact subset Ky, with associated twisted Dirac
operators D and D’. Let w be a bounded closed holonomy invariant transverse form (or
Haefliger current) of degree £ < q. Suppose that

e M has sub-exponential growth, and F is Riemannian;

e the leafwise operators Py, Py, P, and P(/O,e) (for € sufficiently small) are trans-
versely smooth;

o min(NS(D),NS(D")) is greater than £;

o RE, and hence also Rfj:,, is uniformly positive near infinity.

Then, since ch(E) = ch(E’) off K,

/(AS(DF)(ch(E) —ch(E) Aw = /(ch(PO) — ch(P)) Awr.
K

In the reflective case, again more constraints are necessary to obtain the link with the
index bundle, and we have the following.

Theorem 6.8. Suppose that F (so also F') is reflective. Suppose furthermore that F
is Riemannian and that ]30 and 13(0,6) are transversely smooth and the Novikov-Shubin
invariants of ZA)I; are greater than £, for some 0 < € < q/2. Then for any 2¢ homogeneous
p-compatible (w,w’) as above,

(ch(Ind, (D, D")), [wr, wi]) = (ch(Py), D).
Moreover, if we impose the assumptions of Theorem 4.0, then
{(ch(Py), ch(B), (wr,w)) = (ch(Py), Bz,

In Section 7, we consider foliations which admit positive scalar curvature (PSC) leaf-
wise metrics. Given such a foliation, we associate to any pair (go, g1) of such metrics, an
invariant living in Haefliger cohomology, which provides an obstruction for the leafwise
path connected equivalence of gg and g;. This precisely generalizes the classical Gromov-
Lawson invariant. Finally, we construct a large collection of spin foliations whose space
of leafwise PSC metrics has infinitely many path connected components.

Acknowledgments. MTB thanks the French National Research Agency for support via
the project ANR-14-CE25-0012-01 (SINGSTAR). JLH thanks the Simons Foundation for
a Mathematics and Physical Sciences-Collaboration Grant for Mathematicians, Award
Number 632868.

The authors would like to express their special thanks to the referee whose careful
reading and cogent remarks were very helpful.



8 M.T. Benameur, J.L. Heitsch / Journal of Functional Analysis 289 (2025) 111098

2. The setup

In order that this paper be self contained, we begin this section recalling some material
from [8].

Denote by M a smooth non-compact complete Riemannian manifold of dimension n,
and by F an oriented foliation (with the induced metric) of M of dimension p, (until
further notice, we assume that p is even), and codimension ¢ = n — p. The tangent and
cotangent bundles of M and F' are denoted TM,T*M,TF and T*F. The normal and
dual normal bundles of F' are denoted v and v*. A leaf of F' is denoted by L. At times,
we will assume that F' is Riemannian, that is the metric on M, when restricted to v
is bundle like, so the holonomy maps of v and v* are isometries. We will consider the
general case in [9].

We assume that both M and F' are of bounded geometry, that is, the injectivity
radius on M and on all the leaves of F' is bounded below, and the curvatures and all of
their covariant derivatives on M and on all the leaves of F' are bounded (the bound may
depend on the order of the derivative).

Let U be a good cover of M by foliation charts as defined in [24]. In particular, denote
by DP(r) = {x € R?,||z|| < r}, and similarly for D%(r). An open uniformly locally finite
cover {(U;,1;)} of M by foliation coordinate charts v¢; : U; — DP(1) x D9(1) C R™ is a
good cover for F' provided that

1. For each y € D?(1), P, = ¢; '(DP(1) x {y}) is contained in a leaf of F. P, is called
a plaque of F.

2. If U; NU; # 0, then it is contractible, and if U; NU; # 0, then U; N U; # 0.

3. Each 1); extends to a diffeomorphism ; : V; — DP(2) x D?(2), so that the cover
{(V;,4;)} satisfies (1) and (2), with D?(1) and D4(1) replaced by D?(2) and D4(2).

4. Each plaque of V; intersects at most one plaque of V; and a plaque of U; intersects
a plaque of Uj if and only if the corresponding plaques of V; and V; intersect.

5. There are global positive upper and lower bounds on the norms of each of the deriva-
tives of the ;.

Bounded geometry foliated manifolds always admit good covers. In particular, we may
assume that the V; have a uniform bound on their diameters significantly less than the
bound on the injectivity radii.

For each U; € U, let T; C U; be a local complete transversal (e.g. T; = ;' ({0} x
D9(1))) and set T' = |J T;. We may assume that the closures of the T; are disjoint. Given
(U;, T;) and (U;, Tj), suppose that ;e : [0,1] — M is a path whose image is contained
in a leaf with 7,;,(0) € T; and ~;;¢(1) € T;. Then ;;, induces a local diffeomorphism
hye o+ T; — Tj, with domain Dom,,, and range Ran., ,, which are assumed to be
maximal. Note that the domains of the h;;, cover T, as do the ranges. The space A¥(T)
consists of all smooth k-forms on T" which are C'°° bounded and have compact support
in each T;. The Haefliger k-forms for F, denoted A¥(M/F), consists of elements in the
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quotient of A¥(T) by the closure of the vector subspace W generated by the elements of
the form o, — h;iﬂaiﬂ where ;0 € AIS(T) has support contained in Ran,, . We need
to take care as to what this means. Members of W consist of possibly infinite sums of
elements of the form oy, — hfyij ,Qije, With the restriction that each ¢ and each j appears

at most a finite number of times. The projection map is denoted
[]: A(T) — AZ(M/F).

Denote the exterior derivative by dr : AX(T) — AF1(T), which induces dg :
A¥(M/F) — A¥1(M/F). Note that A*(M/F) and dg are independent of the choice
of cover U. The cohomology H*(M/F) of the complex {A%(M/F),dy} is the Haefliger
cohomology of F'.

Denote by A% (M) the space of differential forms on M which are smooth and C*
bounded, and denote its exterior derivative by djs and its cohomology by H;(M;R).
As the bundle T'F is oriented, there is a continuous open surjective linear map, called
integration over F,

[ s aztan - 4k,

F

which commutes with the exterior derivatives. This map is given by choosing a partition
of unity {¢;} subordinate to the cover U, and setting /w to be the class of Z / diw.
F LU,
It is a standard result, [21], that the image of this differential form [ / w} e AK(M/F)
F
is independent of the partition of unity and of the cover U. As / commutes with dps
F
and dj, it induces the map / : HPTF(M;R) — HF¥(M/F).
F
Note that / is integration over the fibers of the projection U; — T;, and that each
U;
integration w — / ¢;w is essentially integration over a compact fibration, so / satisfies
U; F

the Dominated Convergence Theorem on each U; € U.

The holonomy groupoid G of F' consists of equivalence classes of paths v : [0,1] — M
such that the image of v is contained in a leaf of F. Two such paths v; and - are
equivalent if v1(0) = 72(0), v1(1) = 72(1), and the holonomy germ along them is the
same. Two classes may be composed if the first ends where the second begins, and the
composition is just the juxtaposition of the two paths. This makes G a groupoid. The
space G(© of units of G consists of the equivalence classes of the constant paths, and we
identify G with M.
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The basic open sets defining the (in general non-Hausdorff) 2p+¢ dimensional manifold
structure of G are given as follows. Given U;,U; € U and a leafwise path ;j, starting in
U; and ending in U}, define the graph chart U; X, U; to be the set of equivalence classes
of leafwise paths starting in U; and ending in U; which are homotopic to v;;¢ through a
homotopy of leafwise paths whose end points remain in U; and U; respectively. It is easy
to see, using the holonomy map h.,,, : T; — Tj that U; x,,, U; ~ DP(1) x DP(1) x D?(1).

G has the natural maps r,s : G — M, with s([7]) = 7(0) and r([y]) = 7(1). It also has
two natural foliations, Fs and F;., whose leaves are the fibers of s and r. We will primarily
use Fy, whose leaves are denoted Em = sil(x), for x € M. Note that r : Er — L is the
holonomy covering map. We will assume that G is Hausdorff, which is automatic for
Riemannian foliations.

The smooth sections of a bundle E are denoted by C*°(E), and those with compact
support by C°(FE). We assume that any connection or any metric on E, and all their
derivatives, are bounded. See [30] for material about bounded geometry bundles and
their properties.

For a real or complex bundle Ej; — M, the external tensor product bundle Fj; X
E5; — M x M can be pulled back under (s,r) to a smooth bundle denoted EX E* over
G. We denote the smooth, bounded sections k() with compact support of the restriction
of this bundle to the subset U; x.,,, U; C G by C*(U; x,;, Uj, E X E*). We extend
them to all of G by setting k(vy) = 0 if v ¢ U; x,,, Uj.

Definition 2.1. [7] The algebra C2°(E X E*) consists of smooth sections k of E X E*,
called kernels, such that k is a (possibly infinite) sum k& = Zijé kije, with each k;jp €
C (Ui X, Uj, EX E*). For each k, we require that there is a bound on the leafwise
length of its ;0. We further require that for each k, each of its derivatives in the local
coordinates given by the good cover is bounded, with the bound possibly depending on
the particular derivative.

The proof of Lemma 2.3 of [5] shows that this is indeed an algebra. Using the K-theory
of such a foliated analog of the Roe algebra as a receptacle for indices of leafwise Dirac
operators on open foliated manifolds is not a completely new idea. See for instance [32].

Each k € C°(EX E*) defines a G-invariant leafwise smoothing operator on C°(E) in
the sense of [13], which is transversely smooth, and it has finite propagation due to the
limit on the leafwise lengths of its ~;;¢. See [30] for the definition of bounded geometry
smoothing operators, as well as [28] for the groupoid version. To see this, use the leafwise
distance function d(v,7) on L,. This is defined as the infimum over the leafwise length
[(v9~1) of all paths in the class of Y9~ € G. For any bounded geometry foliation with
Hausdorff holonomy groupoid, the sets U; x.,,, U; have the property that there is a
universal constant (namely the bound C' on the diameters of all the plaques in all the
Us X,,;, Uj), so that for all v € U; x,,, U;, we have [() < [(745¢) + 2C. Next, suppose
that ki € C°(Us X, Uj, EX E*), and 0 € C°(E). Then,
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kise(0)(7) = / k(3o (3)dA.
L

s(v)

Now, kije(7y~) = 0 unless /77! € U; X, Uj, that is only if (v~ = ds(+)(71,7) <
[(ije) + 2C, the very definition of finite propagation. The restrictions imposed on each
kije imply that each U; and each U; appears at most a bounded number of times, so the
sum converges locally uniformly, in particular pointwise. These restrictions on k insure
that it also has bounded propagation.

Denote by Dr a generalized leafwise Dirac operator for the even dimensional foliation
F'. Tt is defined as follows. Let Ej; be a complex vector bundle over M with Hermitian
metric and connection, which is of bounded geometry. Assume that the tangent bundle
TF is spin with a fixed spin structure. Because F' is even dimensional, the bundle of
spinors along its leaves, denoted S splits as Sp = S;E ® &g . Denote by V¥ the Levi-
Civita connection on each leaf L of F. V¥ induces a connection V¥ on Sp|L, and we
denote by V*# the tensor product connection on Sp ® Ejr|L. These data determine a
smooth family Dr = {Dp} of leafwise Dirac operators, where Dy, acts on sections of
Sr ® Ep|L as follows. Let X7, ..., X, be a local oriented orthonormal basis of T'L, and
set

where p(X;) is the Clifford action of X; on the bundle Sp ® Ej/|L. Then Dy does
not depend on the choice of the X;, and it is an odd operator for the Zs grading of
Sr @ Ey = (Sf @ Ex) ® (Sp @ Enr). Thus Dy : C°(SE @ Epr) — C°(SE @ Ear), and
D% : C2(SE ® Ey) — C2(SE @ Eyy). For more on the generalized Dirac operators
that we are using here, see [27].

Given a leafwise operator A on S® E® Av?, denote its leafwise Schwartz kernel by k4.
Then, depending on the context and under appropriate assumptions on k4, the Haefliger
traces, Tr(A) and Tr(A), of A are defined to be,

Tr(A) = / tr(ka(F,7))der € AZ(M/F)  and
i

Tr(A) = / tr(ka(7,7))dep | € HY (M/F),
F

where dzp is the leafwise volume form associated with the fixed orientation of the foli-
ation F. The element T € L, is the class of the constant path at x € L C M. See again
for instance [4] for more details on these constructions.

Now suppose that we have the situation in Section 4 of the companion paper [8]. That
is, we have:
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o foliated manifolds (M, F') and (M’, F’);

 Clifford bundles Epy — M and Epy — M’, with Clifford compatible Hermitian
connections;

o leafwise Dirac operators Dy and Dp/;

o compact subspaces Ky = M \ Vi and Ky = M/ N VY

o an isometry ¢ : Vay — Vi, with o= 1(F') = F;

vF',E'

vi,) =

e an isomorphism ¢ : Euly,, — E}Wh%/, covering ¢, with ¢*( ‘

vEE |VM'

The pair ® = (¢, ¢) is thus a bundle morphism from FEp |V to EY,|V{,. The well
defined (since they are differential operators) restrictions of Dr and Dp- to the sections
over Vis and Vj,, agree through @, i.e.

((I)_l)* ODF Oq)* |V](/[, = DF/ |V1(4,

Such operators are called ® compatible. Without loss of generality, we may assume that
Kar and K, are the closures of open subsets of M and M’ respectively.

Recall the following material from [8]. Denote by g : M — [0,00) and ¢’ : M’ —
[0,00) compatible smooth approximations to the distance functions 05 (KCas,z) and
o (KYyr, '), where 9p7 and 94 are the distance functions on M and M’. So we assume
that g and ¢’ are 0 on Ky and K, respectively and they satisfy ¢’ o ¢ = ¢. Hence, for
s > 0, the open submanifolds M(s) = {g > s} and M'(s) = {¢’ > s} agree through ¢,
that is p(M(s)) = M'(s) and g|ar(s) = g’ © @|r(s)- For s > 0 denote by T the set

T, = {T, C T | T,n M(s) # 0},

and similarly for T7.

Suppose that (¢,¢") € W x W' C AY(T) x Ay (T"), with ¢ = 37, )@ — hia and
¢ = Z(a,ﬁ,) o — hf{/o/. For simplicity, we have dropped the subscripts. The vector
subspace W x, W' C W x W’ consists of elements (¢,¢’") which are ¢ compatible. This
means that all but a finite number of the (o, ) and (¢/,~’) are paired, that is

a = ¢'(a’) and 9 = oy, so a—hja = (o' —hja).

Definition 2.2. Given § € Aj(T) and ' € A%(T"), the pair (3,5’) is p-compatible if
there exists s > 0 so that 8 = ¢*(8') on Ts. Set

AUM/F,M'[F';0) = {(B,8") € AUT)x ALT) | (8, 8') is @ compatible}/(W x, W).

The de Rham differentials on A*(7T") and A%(T") yield a well defined relative Haefliger
complex, whose homology spaces are denoted

H(M/F,M'[F';¢) = ®o<k<gHe (M/F,M'/F'; ),
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and there are well defined graded maps,
7:H(M/F,M'JF';¢) — H(M/F) and ' : H'(M/F,M'/F'; o) — HX(M'/F").
which are induced by the projections
AS(M/F,M'JF'; @) — AS(M/F) and AX(M/F,M'/F';p) — AS(M'/F").

Definition 2.3. Suppose (§,&') € AZ(M/F,M'/F’;¢), and let C' and C’ be closed
(bounded) ¢ compatible holonomy invariant Haefliger currents. Set

<(£7§/)7 (Cv Cl>> = 511)120 (C(€|T\TS) - Cl(§/|T/\Ts/)) :

This is well defined because any representative in (£,&’) is ¢ compatible, so the right
hand side is eventually constant. In addition, every (¢,{") € W x, W' is ¢ compatible,
so satisfies

Sll{glo (C(<|T\T5) - C/(C/|T'\T;)) = 0.

To see this, recall that there is a global bound on the leafwise length of the v and 7' in ¢
and ¢’. This, and the fact that there are only finitely many unpaired (o, ) and (a/,v"),
insures that for large s, every unpaired (o, ) will have both Dom., and Ran, C T'\T, so
C(a—h’a) will be zero, and similarly for every unpaired (a’,v"). Those (a, ) and (o', 7")
which are paired and appear in the integration, will have Dom, and/or Ran, C T \ Tj
with corresponding Dom,, and/or Ran,, C 7" \ T.. In both cases, their integrals will
cancel.

Remark 2.4. Examples of such currents include the following.

1. Invariant transverse measures A and A’ on T and T which are ¢ compatible as in

2. Suppose w € C®°(A*r*) and w’ € C*°(A*1'™) are closed holonomy invariant forms on
M and M’ which are ¢ compatible. They determine ¢ compatible closed holonomy
invariant currents, also denoted wr and w’.. In particular,

(€ @rwp) = lim | [enor= [&nap

Here wyp = w |y, which is well defined and is holonomy invariant, as is w/.

For Riemannian foliations, examples of this type abound. In particular, the char-
acteristic forms of holonomy invariant bundles which agree at infinity, for example
Nv* @ (@), and NV * @ (@49).
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For definiteness, we will generally use this example in the sequel, but all the state-
ments obviously remain valid with more general holonomy invariant currents.

In this paper, we will have a number of different pairings, which will be uniformly
indicated by the notation (-,-). The notation should make clear where the objects live.
For example, we have

(| [ as0e), [ as0p)| fwrwipd) = [ | [450r) | ner

F F’ T v
_/(r AS(Dip) | A,
T/ !

and

{(ch(Py), ch(Ry)), (wr,wp)) = /ch(PO)/\wT — /ch(Pé) A Wi
T T

In the first case, the terms in the pairing live in relative Haefliger cohomology. In the
second, the terms are pairs of bounded Haefliger forms, and the second pair happen to
agree near infinity.

3. Chern characters in haefliger cohomology

We recall in this section the main steps in the construction of the Chern character
in Haefliger cohomology and explain how they immediately extend to the case of a pair
of foliations which are compatible near infinity. In this latter case, our Chern character
takes values in a relative version of Haefliger cohomology that we introduce below.

In [8] we worked on M, while in [23,25,4,5], we worked on G, which we will also do
here, but our basic data will be taken from the ambient manifolds. The results in [§]
extend readily to G with the only change being that the spectral projections used on
G are for the operator lifted to Fs. This represents another extension, in the spirit of
Connes’ extensions in [13,14], of the classical Atiyah L? covering index theorem, [1]. In
addition, as will be explained below, the results in the above cited papers where M was
assumed to be compact still hold provided both M and F are of bounded geometry and
we use our definition of the Haefliger cohomology.

All the data in the previous section may be lifted to (G, Fs) using the map r : G — M.
The notation we will use is obtained from that above by:

Ev—E Sp—8 VPP 5V, L—L, Dpr—D; Dp— D,.
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Thus the smooth G invariant family D = {D,} of leafwise Dirac operators acting on
sections of S ® E|L, is given as follows. Let X7, ..., X, be a local oriented orthonormal
basis of T'L,,. Then,

P
Z V. : C®(Ge,8* © E) = C2(Go, ST ® E) and
D3 : ?(gz,si@oE)%Cm(gz,si@E)

Denote by AvE, the exterior powers of the dual normal bundle v} of Fy = r*F, which
we identify with s*(T*M) = s*(TF*) @ s*(v*) so that each C*(S ® E ® Av¥) is an
Q*(M)-module. We extend D to an Q*(M)-equivariant operator

D:0X(S®EQN) — CX(S®E® A,

by using the leafwise flat connection on Av} determined by the pull-back of the Levi-
Civiti connection on T*M.

In [5], we used the traces Tr and Tt to define Connes-Chern characters in H¥(M/F)
for operators on C°(S ® E). For the leafwise spectral projection Py onto the kernel of
D?, when this latter is smooth, this is denoted,

ch(Py) € HI(M/F).

We also proved that if M is compact and Ind,(D) is Connes’ K-theory index class
defined in terms of a parametrix for D, then under the usual regularity assumption,
ch(Py) = ch(Ind,(D)). We now extend these notions to our situation.

We now return to our compatible foliations (M, F') and (M’, F’) and their holonomy
groupoids G and G'. First, we lift the compatibility data ® to G and denote again the
corresponding data by ®, which gives an equivalence off (the generally non-compact
subsets) K = r~}(Kj;) and K’ = (')"Y(Ku), that is on the subsets V = r=1(Vyy)
and V' = ()"} (Var). In [5], we defined an algebra of super-exponentially decaying
G-operators on C°(S ® E ® Av?). Here we need a stronger condition on our operators,
namely that they have finite propagation. This is provided by using operators from the
algebra C2° (S EQAVH)K(S® EQAVE)*), which we denote simply as C2°(Fy). Any A =
(Az)zem € C(Fy) defines a leafwise (smoothing) G-operator on C°(S® E®@ Av}) which
has uniform finite propagation, and its Schwartz kernel is smooth in all variables, with
all derivatives being globally bounded, the bounds possibly depending on the derivatives.

Using the algebra C2°(F;), we have a K-theory index class represented by idempotents
constructed from a parametrix, and this K-index does not depend on the parametrix, so
its Connes-Chern character is also independent of the parametrix. For a more detailed
discussion of the following construction, see [16], p. 353. In particular, as D is an odd

0 D~

D+ o | Suppose that @, is a smooth (in )

super operator, we may write D =
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family of leafwise parametrics for D. That is, each Q; is an odd operator which is smooth
in all variables, and which has finite propagation remainders, namely the even operators

St = IS+®E —Qt_D+ and Rt = IS—®E_D+Qt_~
For t > 0, set, as in [5],

St Qi (Ry+ R?)
A=
R.D* _R2

Then A; has finite propagation, is smooth in all variables, and is a bounded leaf-
wise smoothing operator, that is, A, € C°(Fs). Set m_ = diag(0,Is-gg), and 7 =
diag(Is+gr,0). Then A; + 7_ is an idempotent as is 7_. Set

Ind, (D) = [A;+ 7] — [r_] € Ko(C2(F)).

Since A;+m_ is a smooth family of idempotents, it follows from results of [4] that Ind, (D)
is independent of t. Since any two parametrics can be joined in a smooth family, it follows
immediately that Ind, (D) does not depend on the parametrix.

For details of the following, see [5], Section 3, where we define the quasi-connection,

C®ES®E® ) Lo C°(S®E® A
Given an operator A on S ® E ® Av¥, denote by
0y : End(C*(S® E® Av))) » End(C*(S ® E ® AvY))
the linear operator given by the graded commutator
0, (A) = [V, A].

Set 0 = (V*)?, which is a leafwise differential operator with coefficients in Av?. Since 92
is not necessarily zero, in [5] we used Connes’ X-trick, see [17], Section III.3, Lemma 9,
to construct a new differential operator  out of 9, and 6, whose square is zero. Note
carefully that §A is nilpotent since it always contains a coefficient from Av=1.

Corollary 3.7 of [5] states,

2im

Proposition 3.1. The Haefliger form TY(At exp [_(5‘4‘)2}) is closed, and the Haefliger
class

25T

‘Et(At exp {_(J—WD is independent of t.
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Definition 3.2. The Connes-Chern character of Ind, (D) is,
—(6A;)?
ch(Ind, (D)) = ‘It(At exp [%D e H*(M/F).
i

We have the same constructions for D’. In Section 5, we construct families of para-
metrics @Q; and Q) directly from D and D’ in such a way that their remainders are @
compatible, so also are A; and Aj.

For pairs (A, A’) of operators from C°(Fs) x C°(F?%) which are ®-compatible, there
is also an algebra CS°(Fj, F.; ®), and the previous construction of the analytic index
class extends immediately to yield the relative analytic index class

Ind,(D,D") = [(As+7_, A, + 7" ] — [(m_,7")] € Ko(C°(Fs, FL; @)).
The Connes-Chern character then extends to the relative case
ch: Ko(Cp°(Fs, Fy; @) — HI(M/F,M'/F'; ¢),

with the obvious definition (see [5], Theorem 3.2 for the notation below and more precise
details),

ch([e,&]) = {Tr (eexp(_(66)2)> ,Tr (e'exp<_<6e/)2>)] e H*(M/F,M'|F';).

2T um

Definition 3.3. Suppose the parametrics Q; and @} have ® compatible remainders, so
with ® compatible operators A; and Aj}. Then the relative Connes-Chern character of
Ind, (D, D’) is given by

ch(Ind,(D, D')) =
re (s (822 ) e (s (842 & o,

um

The class ch(Ind, (D, D)) is clearly well defined due to its independence of the ®-
compatible pair of finite propagation parametrics. This is proved below, see Theorem 5.5,
where we also point out that it is independent of the parameter t.

4. Four theorems

Our first main theorem is the following extension of a classical Atiyah-Singer Index
Theorem. This theorem is purely local and, as in [8], requires bounded geometry.

Denote by [AS(Dp)] the Atiyah-Singer characteristic class for Dp, and similarly for
D’.,. Note that for large s, the differential forms satisfy AS(Dp) = ¢*(AS(D%)) on Mj,
SO
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[Ase), [4sDp)) | € Ava/E M),

F F’

Definition 4.1. The relative topological index of (D, D’) is,

Ind;(D,D") = /AS(DF),/AS( )| € HiX(M/F,M'JF';¢).

F F’

Theorem 4.2. [The Higher Relative Index Theorem] Suppose that (M, F), (M',F"), D
and D’ are as in Section 2. In particular, F' and F' need not be Riemannian. Then,

ch(Ind, (D, D")) = Ind,(D,D") € HY (M/F,M']F’;¢)

In particular, for any closed p-compatible pair (C,C") of holonomy invariant closed Hae-
fliger currents, the following scalar formula holds

(ch(Ind, (D, D)), [C,C"]) = lim | / AS(Dp)lror,. C) / AS(Dp) vy, C')

s—+o00
F F

Denote by P, the spectral projection for D? for the interval (0,¢). The Novikov-
Shubin invariants NS(D) of D are greater than k > 0 provided that there is 7 > k so
that

Tr(Po,e)) is O(e") as € = 0.

A Haefliger form ¥ depending on € is O(€e™) as € — 0 means that there is a representative
1) € U defined on a transversal T, and a constant C > 0, so that the function on T,
|7 < Ce™ as e — 0. Here || || is the pointwise norm on forms on the transversal T
induced from the metric on M.

Recall that P, is the spectral projection onto the kernel of D?. In general the leafwise
operators P(g ) and Py are not transversely smooth (although they are always leafwise
smooth), so that, in general, their Haefliger traces in A%(M/F') are not defined. When
P, is transversely smooth, see [5], Definition 3.8,

ch(Py) = zt(wipo exp <#ﬁf‘”2>) € H*(M/F),

and similarly for P). Here 7 is the grading operator

T+ = diag(15+®E,—I$7®E).
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When P ) is transversely smooth,

2

ch(Po,) = Tt(ms P exp <_(5(7r;+)))>) € H:(M/F),
and similarly for P(IO,E) For simplicity of notation, we will uniformly suppress the constant
2im in what follows. As the closed Haefliger differential forms Tr(my. Py exp (—(6(m+Fp))?))
and Tr(m), Py exp (—(8(7’. Pj))?)) are not ¢ compatible in general, we proceed as follows.

The component of ch(Ind, (D, D')) in H2*(M/F, M’/ F'; ¢) is denoted chk(Inda(D, D)),
and the part of ch(Ind,(Py) in H2*(M/F) is denoted ch”(P)), and similarly for P}

The following theorem generalizes the main result of [5] to bounded geometry folia-

tions.

Theorem 4.3. [Riemannian Foliation Relative Index Bundle Theorem] Fiz 0 < ¢ < q/2,
where q is the codimension of F and F'. Assume that:

o the foliations F' and F' are Riemannian;

e the leafwise operators Py, Py, P, and P(/O,e) (for € sufficiently small) are trans-
versely smooth;

o NS(D) and NS(D') are greater than .

Then, for 0 < k < £, we have in H?*(M/F) x H**(M'/F")
(m x ') ch¥(Ind, (D, D')) = (ch*(Ind, (D)), ch*(Ind,(D’))) = (ch*(Py),ch*(P))).
Remarks 4.4.

1. If the foliations F' and F’ are not Riemannian then we can still prove this equality
but under the stronger assumption that N.S(D) and NS(D’) be greater than 3¢, see
[25,9].

2. The examples in [6] show that the conditions on the Novikov-Shubin invariants are
the best possible.

3. Note that if there are uniform gaps in the spectrums at 0, that is there is € > 0 so
P,y = P(’076) = 0, then P ¢ and P('076) are transversely smooth and the Novikov-
Shubin invariants are infinite. For top dimensional foliations, i.e. TF = T M, these
special cases were studied for instance in [33,18].

Combining Theorem 4.2 and Theorem 4.3, we immediately deduce the following im-
portant corollary.

Theorem 4.5. Under the assumptions of Theorem 4.3, assume furthermore that Py =
Py =0, then
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/ AS(Dp), / AS(Dy) | = (0,0) in HX(M/F) x H*(M'/F").

F F’

So the vanishing conclusion of the previous theorem holds in particular when there
exists € > 0 such that Py ) = 0 and P[Io,e) =0.

Denote by w € C®°(A*r*) and w’ € C®°(A*1'™) closed bounded holonomy invariant
differential forms on M and M’ which are ¢ compatible. For simplicity, we will assume
that w and w’ are ¢ compatible on Vj; and V;,,. These determine ¢ compatible closed
bounded Haefliger forms on T, denoted wr and w/. . Recall that dz is the global volume
form on M.

Theorem 4.6. [Higher Relative Index Pairing Theorem] In addition to the assumptions
in Theorem 4.3, assume the following:

o for e sufficiently small, Py . satisfies /tr(P[O,E))dz < oo, and similarly for P[/O,e);

M
e M, and so also M’, has sub-exponential growth.

Then, for any homogeneous w € C™(AT=2kv*) and w' € C®(AT=2k1"™) as above, (0 <
k<t),

/ch(PO) Awr and /ch(Pé) AW are well defined complex numbers,

T T
and
/ch(PO)/\wT — /ch(Pé)/\oJ'T, = { /AS(DF),/AS(D};,)  |wr, wip ).
T T P bl
Remarks 4.7.

1. Since the pair of Connes-Chern characters of Py and P} is usually not p-compatible,
the previous theorem is totally new and we cannot deduce it from any absolute
version of the index bundle theorem. This is compatible with the classical relative
index theorem.

2. The theorem also holds for appropriate closed ¢ compatible closed holonomy invari-
ant currents, but this more general statement will not be needed for our applications.

3. We shall see in Section 6 that the finite integral assumptions are satisfied when the
zero-th order operator RE defined there in the Bochner formula is strictly positive
near infinity. As RE is locally defined, this means that Rg: is also strictly positive
near infinity.
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4. The growth condition is a technical assumption which simplifies the proof, it can be
weakened as explained in Remark 5.7

5. The main theorem in [8] recovers the Gromov-Lawson relative index theorem in full
generality for bounded geometry manifolds, which correspond to top-dimensional
foliations. Our results here require more conditions to deal with the higher com-
ponents of the Connes-Chern character, and it only recovers the Gromov-Lawson
results for sub-exponential bounded geometry manifolds. Recall that in the top-
dimensional case, Gromov-Lawson show that there is ¢ > 0 so that P = 0, and

/ tr(Py)dx < oo, so all the other assumptions of Theorems 4.3 and 4.6 are fulfilled.
M

5. Proofs of the theorems

This section is devoted to the proofs of Theorems 4.2, 4.3, 4.5 and 4.6. The proofs are
rather technical and have been split into many intermediate lemmas and propositions.
We shall first prove Theorem 4.2 and then later on Theorems 4.3 and 4.5, and eventually
we shall end this section by the proof of Theorem 4.6.

Recall the following construction from [8]. Denote the Fourier Transform of a complex
valued function g by g and FT(g), and its inverse transform FT~'(g) by g. If h is also
a complex function, denote the convolution of g and h by g x h. Set gx(z) = g(Az), for
non-zero A € R*. We have the following facts:

FT(gy) = %FT(g)%; FT(g*h) =\2rFT(g)FT(h); and

FT(g) = FT~'(9) = g, if g is even.

Fix a smooth even non-negative function ¢ supported in [—1,1], which equals 1

on [—1/4,1/4], is non-increasing on R, and whose integral over R is 1. Note that

FT(y) = 9 since v is even. The family %1/1 1 is an approximate identity when act-
t

ing on a Schwartz function f by convolution, since, up to the constant /27 which we
systematically ignore,

~ =

1~ _ 1 -~ _
%w xf = FT 1(FT(%w *f) = FT (i f) = f = f,

in the Schwartz topology as t — 0. Denote as usual by || -

<
=

t

|r,s the norm of an operator
acting from the r Sobolev space to the s Sobolev space. Then more is true.

Lemma 5.1. Suppose that p: Ry — Ry, with p(t) < Cpt? or u(t) > Cpt~P near 0, where
p >0 and Cp, > 0. Then, for any Schwartz function f,

. 1 -~
s Q_tw“lz *f]u(t) - fm) -
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in the Schwartz topology.
Thus for all r, s,

lim ||

i[5

s\~

f} (D) — fuyD)lle = O,
n(t)

so the differences of their Schwartz kernels converge uniformly to 0 pointwise.

Proof. The last statement follows from standard Sobolev theory given the first. Thus we
need only prove that the difference of the Fourier transforms goes to zero in the Schwartz
topology. But,

T {_
< \f
Now, ¥ z/,)(2) —1is 0 for |z] < u(t)/4y/t and constant for |z| > u(t)/Vt, so all
its derivatives are zero on these subsets. In addition, for all non-negative n, there is a

1 ~
f]u@) ~ T o) = o T

5 WV — -

s|~

constant (), so that

Wy (?) — DI < CalVE ()"

Thus, we have

II="

YRS

o | Ty o = Dl =

sup
l2[>p(t)/ (4V1)

Lo 1
e [@f@@/’ﬂ/w) —1)H =

Je

2 F) (2 ()| =

sup
|z|> () /(4VE)

> Co ik (VE/ )™ F )= sup
k=0 |2[2p(t)/ (4VF)

n S m— 8k 1 -~
S O VO 5 [

S ok VO™ Fu(t) Y sup
_ |z1>1/(4v/)

2 f9 ().

Since f, so also f, is Schwartz, for any non-negative k € Z, the function z z"f(k)(z)
is Schwartz. But for any Schwartz function g, any N > 0 (N < 0 is trivial) and
any n > 0, limt™ Y sup |g(z)| = 0. Thus, if u(t) < Cpt? or u(t) > Cpt~? near 0,

t—0
lz1>n/ vt
m 1

lim [[2" 22 mfﬁ(w\/z/u(t)_l) lo = 0. O
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Define the functions «(t) and 3(t) as follows. Both have domains (0,1), and are
smooth. «(t) = t near 0, and «(t) = 1—t near 1, it is increasing on (0, 1/2] and symmetric
about t = 1/2. 8 is an increasing function, with 8 = ¢ near 0, and 5(t) = (1 —t)~! near
1.

Set e(z) = e~ /2, and for t € (0,1), set

Remark 5.2. By Lemma 5.1, we have,

lim (Xt(z) B e4z2/2> — 0 = lim (Xt(z) B €7z2/(2(17t))>,

t—0

in the Schwartz topology. In addition, the limit as ¢ — 0 of the Schwartz kernel of
Y{(D) — e~tP*/2 and the limit as ¢t — 1 of the Schwartz kernel of x!(D) — e~P°/(2(1-1)
both converge uniformly pointwise to zero.

Lemma 5.3. x*(D) has finite propagation < \/B(t)/a(t).

Proof. Since € = e, we have that up to a constant,

le *e):lpme.

In fact, up to a constant,

(D) = FT7' (W o) (VBOD) = / B(v/a(DE)e(€) cos(€/BED) de.
R

since ¥ ve is even. Setting n = \/a(t)§ gives,

x'(D) / Y(n)e(n/ v/ a(t)) cos(ny/B(t)/a(t)D)dn.
n|<1

1
Y ot),

The operator cos(ny/B(t)/a(t)D) has propagation < |ny/5(t)/a(t)], see [12,29]. Thus
x'(D) has finite propagation < /3(t)/a(t), which near 0 is < 1, while near 1 it is
< (1—1t)7!, so may go to infinity as t — 1. O

As D is an odd super operator, we may write

0 D-
D = lDJr 0 ],andweset
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0, = (1 —xt(OZ)‘lxt(Z))(D) _ (1 —xt(O)‘lxt(z)Z)(D).

22

We claim that Q; is a smooth family of leafwise parametrics for D with finite propagation
® compatible remainders, namely the even operators

St = IS+®E *Qt7D+ and Rt = IS*®E7D+Qt_'

There are similar relations for D~.
The main step in the proof of Theorem 4.2 is the following expected independent
result.

Proposition 5.4. For 0 <t <1, set, as in [8],

St Qy (Re+ RY) St SiQy (1+Ry)
At = = )
R.D* —R? R.D* _R?

a form which is more useful here. Then A; and A, so also (§A¢)?, have finite propa-
gations which are bounded by multiples of \/B(t)/c(t), are smooth in all variables, and
are bounded leafwise smoothing operators.

Proof. We deal with A; first. Note that S; = x'(0)"1x!(D) acting on ST ® E, and
similarly for R; acting on S~ ® E. They both have finite propagations, and by Theorem
2.1, [29], they are both smooth in all variables. It follows immediately that S?, R?, R, D™,
Sy and Ry are also smooth in all variables. Since propagation is additive for compositions,
they all have finite propagations, which are bounded by multiples of 1/5(t)/a(t). Finally,
since x%(z) is a Schwartz function, x*(D) and x*(D)D are bounded leafwise smoothing
operators.
To deal with @, , we show that

~ (= X0) TN (2) (D))
Qt(D D+) - D7D+

has finite propagation which is bounded by a multiple of \/3(t)/a(t), so also does Q; =
@t(D’DJF)D*, and that S;(); is smooth in all variables and is a bounded leafwise
smoothing operator.

For u € (0,1], set

and
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() = LEXO TN g X0 —x(2),

22

Notice that x*%(z) and ¢*°(z) are also well defined, and that for fixed z, the resulting
function is continuous on [0, 1] and smooth on (0, 1). Since

X (z) = FT*(FT( mw *eu>>< B0)-),
we have,
X / P(v/a(t)y) ey/Q“cosy\/—
R
= [ waltiu)e 72 costuy/5(0)2)d,
R
and

X(0) = / b(v/aDuy)e " 2dy.

R

The latter is smooth in ¢ and u, positive, and bounded by /e_y2/2dy. Thus x**(0)~*

R
is smooth on (0,1) x (0,1). In addition,

g (MO = MO0 [ ) e
R

so has the same properties as x"*(0)~L.
Next, we have

() = X0 [ w(vabu)e 2l sy 8

So,
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) v/ B(t
—1/ /Bty ( /a(t)uy)ye_yz/QMdy
z
R

For t and z fixed, this is a smooth function of wu.
Note that x*°(z) is well defined and equals / e v’/ 2dy, which is independent of z.

R
Thus, ¢"°(z) is also well defined and equals 0. As ¢"'(D)T = Q:(D~ D), we have

1 +
~ ats
Gup-p*) =0y 0y = | [ )il

0
o7

so we need to show that (D) has finite propagation which is bounded by a multiple of
u

V/B(#)/a(t). Since x*(0) and 2 (x**(0)~!) are independent of z, they give multiples of
the identity map when evaluated at D, so have propagation zero and may be disregarded.
t,u t,u
X" (z) —x""(0)
22 '
Since x““(z) is an even function, it has Taylor expansion in z with integral remainder

Thus, we may assume that §%(z) =

1
tau)(2) 4
) = o) + 02 4 2 fam e s
0
tu _ Lt
So the Taylor expansion in z with integral remainder of ¢"*(z) = X(z) 3 X(0) is
z
tu 2 |
7 (2) = G 7H0) %/ (1 -0 (") (vz)dv.
0

The term -2 ((x"*)?)(0)) is independent of z, so, as above, it may be disregarded. Using
the fact that

Xz) = [ o/alu) e cosy/Bowe)d
R

we have
(") (vz / (Vat)y)B(t)*v* 4 %€ V2T cos(yy/ vz =
R
1 -~ 4 (4) _ 1 -~
Py HAO ]( B:) = [ 0y *B0 pe| (VED2),
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where p is a finite polynomial in v and z, since e, (z) = e~%*%*/2 Note carefully that
2 (xt")® (vz) has the same form.

As pe, is a Schwartz function for non-zero u, so is (x**)®* (vD), and the now usual
argument shows that it has propagation < v\/B(t)/a(t). As D? has zero propagation,

gtu ~
94 D) has propagation which is a multiple of \/8(t)/«a(t), so also do Q; and Q; .
8 t
U

For smoothness and bounded leafwise smoothing of S;@Q); , first note that

and Sy has these properties. Finally, any positive power of D times an operator of the

form

(t)

has these properties, (the function in the brackets is Schwartz), see for instance Theorem
2.1, [29]. Thus,

Q

l — mw(w%‘lpeu]( 3(tjeD)

has these properties. Therefore, S;Q; has all the requisite properties, so A; does also.

The operator § A, is essentially a polynomial in Ay, 9,(A;) = [V¥, Af], and 0 = (V¥)2.
Both V¥ and 6 are smooth and bounded in all variables and are differential operators.
Since A; has finite propagation and is smooth in all variables, §A; and (64;)? also have
finite propagations and are smooth in all variables.

It remains to show that dA; is bounded leafwise smoothing, but this is a routine
exercise. We give some details for the convenience of the reader. Every term of §A;
contains either A;, 9,(A;), or both. As A; is bounded leafwise smoothing, we need
only show that 0,(A;) = [V¥, A] is bounded leafwise smoothing, since 6 composed
with a bounded leafwise smoothing operator is bounded leafwise smoothing. As 0, is a
derivation, we need only show that 8, applied to the individual elements of A;, save DT,
yields a bounded leafwise smoothing operator.

First,

8,(x' (D (y)e~WBOD=v?*/2g, | —

[t

1
_%/ : L /e (=) (VBOD=v*/25 ((\/B(t) D—y))2)e~*VEOD=v/2q, 4y
R 0
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For the second equality, we refer to the proof of Proposition 3.5 of [23], which is an
extension of Proposition 2.8 of [10] to foliations with Hausdorfl holonomy groupoids.
Now, 9, ((y/B(t)D — y)?) is a differential operator with smooth bounded coefficients, so
8, (x*(D)) has the same properties as x*(D), i.e. it is bounded and leafwise smoothing.
Thus 0,(St) and 9, (R;) are bounded leafwise smoothing. Since 9, (D) is a differential
operator with smooth bounded coefficients, R;0, (D) is also bounded leafwise smoothing.
Finally, as Q; = Q,(D~D%)D~, it suffices to show that S;0,(Q:(D~D")) is bounded
leafwise smoothing. As above, this follows if we show that Stau(ag{—uﬂ(D)) is bounded
leafwise smoothing. For the terms

2
50, (G AOND)) = 8, (O P 0)) 1 and S0,(5)

1
0

this is obvious. As noted above, the term 0, /(1 - v)3a(xt’")(4)(vD)dv has the

0

form

1
d, (/(10)3[ L 7. *ﬁ(t)2v4peu]( B(tywD)dv | =
0

Valt

~—
Q
o~

1

I -~ 2 4 —u(y/B(t)vD—y)?/2
o, [ R/ (a7 @) (0 ol VBO0D — e Oy o .

0

The argument used for 9, (x*(D)) is also valid here, so we have the result. O

We have the same results for D’, and since A; and A} are constructed directly from
D and D’ and have finite propagation, they are ® compatible, as are §A; and JA}. Thus
Tr (At exp(—((SAt)Q) and Tr (AQ eXp(—((SA;)Z) are o compatible. Now Theorem 4.2 will
be deduced right away from the following

Theorem 5.5. For t € (0,1), the ¢ compatible Haefliger forms Tr (Ay exp(—(64;)?) and
Tr (A} exp(—(64})?) are closed. In addition,

[Tr (A¢exp(—(64:)%)) , Tr (4 exp(—(04})%))] € Hi(M/F,M'/F';¢)
is independent of t. So ch(Ind, (D, D)) is well defined, and
ch(Ind, (D, D")) = Indy(D,D’).

Proof. The Haefliger forms are closed by Proposition 3.1, which also gives that
%Tr (At eXp(—((SAt)Q) = dyW;, and %Tr (Af5 exp(—(éA;)Q) = dyW/. To finish the
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proof of ¢ independence, we need only show that W; and W/ can be chosen to be ¢
compatible.

Recall that w4 is the grading operator 7y = diag(Is+gp, —Is-gr) = 7+ — 7—, and
similarly for 7/,. When we identify the spin bundles and Dirac operators off compact
subspaces, we also identify these gradings, so they are ® compatible. In particular, w_
and 7’ are ® compatible. Note that A; + m— and A} + 7’ are idempotents. Using this
fact, in [4], Corrigendum, it is shown that

d

pm (Tr ((A¢ + 7—) exp(—(6(A; + 7L))2)) ,Tr ((A; + 7) exp(—(6(A} + 7r’_)2))) =

dH (Wt7 Wt/)7
where (W, W)) € AX(M/F,M'/F’; ), in particular they are ¢ compatible. This follows
from the fact that the operators 0,,0,0, and § all preserve ® compatibility, and that
W, and W/ are constructed using those operators, A;, A}, 7_, 7’ (and the identities

I and I'), and their derivatives with respect to t. Since Ay, A}, 7, #’, I and I’ are ®
compatible, W; and W] are ¢ compatible. As

dg Tr ((At + 7_) exp(—(6(As + 7L))2)) =dgTr ((AQ + 7" ) exp(—(8(A; + 7r/,)2))
-0,

it follows that

[Tr ((Ay + 7m—) exp(—(6(As +7-))?)) , Tr ((A] + 7)) exp(—(3(A} + 77)?))]
€ H;(M/F,M'/F';¢)
is independent of t.
Next, using Proposition 3.5 and Corollary 3.7 of [5], with the reasoning above, (that

is: all the operators used in the proofs preserve ® compatibility, so if the input is ®
compatible, the output is ¢ compatible), shows that

[Tr (As exp(—(64:)%)) , Tr (A) exp(—(64})?))] =
[Tr ((At +m_)exp(—(06(As + 7— ))2)) ,Tr ((A’ + 7" ) exp(—(6(A; + 7r’_)2))]
€ HI(M/F,M'/F';¢).

For the equality ch(Ind,(D,D’)) = Ind;(D, D’), standard techniques used in [24,5],
coupled with Remark 5.2, show that

lim tr (A exp(—(04,)%)) = AS(Dr),

uniformly pointwise on M, and we have the same for A;. As Tr (A, exp(—(64,)?))
involves integrating over compact subsets, we may interchange the limit with the in-
tegration. 0O
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So we have Theorem 4.2.

Note that so far, we have not used the assumptions in Theorem 4.3 or 4.6. We now
move on to the proofs of Theorems 4.3 and 4.5. For the proof of Theorem 4.3, we need
to show that

}gr% Tr (At exp(—(5At)2)) = Tr (Wipo eXP(*(d(WiPO))z)) .

Recall that A, is only defined for 0 < ¢ < 1, that P, is the projection onto the kernel
of D?; and that A; exp(—(§A;)?) has propagation bounded by ca+/B(t)/a(t) for some
ca € RT. We recall below that

%Eﬁ kP[o,e)AtP[o,q)(f’f) = kP[o,e)WiPoP[o.e)(Evf) = kWiPo(f7f)v

uniformly pointwise which is sufficient for our purposes.
Denote by g ) the characteristic function for the interval [e, 00).

Lemma 5.6. For ¢ a non-negative integer, there exists a constant Cy > 0 depending only
on £, such that

szg[e)oo)xt(z)g[e,oo)||oo < Cpe~V/64at) 4 le=BW/2 0, exponentially ast — 1.

Proof. First note that,

|12 0fe.00) X Clesoo) oo < [12°01c,00) (Xt - 6\/@) Ofe.00) oo+ [12°01c 00y € /377 01600 lloo <
—e2
Hzég[e,oo) (Xt —€ B(t)) Q[e,oo)”oo + Gee B(t)/27
since the maximum for the second term for ¢ close enough to 1 will occur at z = ¢, as
B(t) > occast— 1.
Next, ||zeg[6,oo) (Xt — em) Ole,0)||oo is bounded by ||2* (Xt — em) |00, which in
turn is bounded by the L! norm of FT(z* (Xt — em>). Up to a constant depending

only on ¢,

FT(z" (xtfem)) = ;—;FT (Xt—e\/m) -

o 1 1 1
— FT Uy ke — —¢€
92t B() ( /a(t) 1/ e(t) )1/% /ﬂ(t) 1/V/B(t)

o 1 1 _ 9 [CyvBm _
W( 73 (), \ﬁmwe”m) ) W( 5 g ) =
l

o O (G| 0"
20 oz \ s 5 (Vyam — 1)

k=0
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The function ’(/)\/It; —1 =0on |z < m, and the norms of its deriva-

B
tives are globally bounded by a constant depending only on ¢. Thus the L' norm of

FT (zz (Xt €/ is bounded by a constant, depending only on ¢, times

: oF d
Y el

0
1212 375750

L
= [ anEoB| () g -

1
1212 3750750

£ ] sl = oo [ Sl
R

¢
k=0, k=0
1212 77

Here pj is a polynomial of degree k in both variables, so the integral is bounded by a
constant depending only on ¢. Since a(t) — 0 and S(t) — oo as t — 1, we have the
lemma. 0O

Denote by Q. the spectral projection for D? for the interval [e,00), that is Q. =
Q[Eyoo)(DQ). Since I = Pjg¢) + Qe, the operators Q. and dQ. are transversely smooth
and bounded, as the other two operators are because of our assumption of transverse
smoothness. The operators P ), Q., and A; all commute as they are functions of D, so

At exp (_(5At)2) = P[O,E)AtP[O,e) exp (—(5At)2) + QeAth exp (_(5At)2) .

(=040
Recall that dA; is nilpotent, in particular, exp (7(514,5)2) = Z —

k=0

Lemma 5.6 gives immediately that || D*Q.x*(D)Q|| — 0 exponentially as ¢t — 1. The
fact that every element of A; contains at least one x*(D), and that all the other terms are
bounded, save Dt (but R; D7 is covered by Lemma 5.6), give that ||[D?**Q.A;Q.|| — 0
exponentially as ¢ — 1. Thus, |[D*Q.A;Qc exp (—(64;)?) || — 0 exponentially as t — 1.
It follows from the proof of Theorem 2.3.9 and the statement of Theorem 2.3.13, both
of [24], that the Schwartz kernel of QcA;Qcexp (—(64;)%) — 0 pointwise uniformly
exponentially as ¢ — 1. So,

, see [5].

lim Tr (Qc A4 Qe exp (~(341)?) ) = 0,

in A¥(M/F) and similarly for Q. A,Q.. Thus we may ignore those terms. Note carefully
that this is true for fized € > 0.

For the terms coming from Py (yA; Py ), note that for ¢ near 1, 29[ ) (z) dominates
0[0,6)X"0[0,¢)(2). This follows from Remark 5.2, since lim,_,1 x*(2) = e~ /20-9) in the
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Schwartz topology, and for ¢ near 1, sup, e~ /20-t) = 1, Thus, for £ a fixed positive
integer and for ¢ near 1,

2¢'l0p0,0) ()l = 212%0p0,0) ()l 2 [12°000,0X 010,00 (2)]0-

The fact that ||64,]| and ||exp (—(64;)?) || are bounded and the argument above imply
that a multiple of tr (kp[ovﬁ) (z, f)) dominates || tr (kP[o,E)AtP[o,E) exp(—(540)2) (T, E)) ||. Since

we can ignore Q. A;Q. exp (—((5At)2), the Dominated Convergence Theorem implies
lim Tr (At exp (—(5At)2)> = }/LI)I% Tr (P[076)Atp[075) exp (7(5At)2)) =

/ P[O e)At 0 ,€) exp ( ((SAt)Q)) = /}I_I)I% tr(P[Oﬁ)AtP[O’e) exXp (—(5At)2)),

F F

and similarly for A}.

The proof of Theorem 4.2 in [5], which requires that F' be Riemannian, shows that,
under our conditions on the Novikov-Shubin invariants, in degree 2k for 0 < 2k < 2/ we
have,

lim (Po,o)AiPo.e)) = Po.omFoPo.e = 7+l,

t—1

uniformly pointwise, and similarly for A}. So, in degree 2k for 0 < 2k < 2¢,

/}1_13 tr (P[O,E)Atp[o,e) exp (—((514,5)2)) = /tr (ﬂipo exp (—((5(7riP0))2)) = chy(FPp).
F F
So, we have proven Theorems 4.3 and 4.5.

It remains to prove Theorem 4.6, and we thus need to compute the limits as t — 0
and t — 1 of

lim /Tr (Arexp(—(64¢)?) Awr — / Tr (A} exp(—(6A})%) A why
S§—» 00
T, T'\T!

For lim;_,o, we may assume that the two integrands agree on M (0) = Vjy and M'(0) =
Vi (actually on fixed penumbras). Then we have,

lim lim /Tr (A exp(—(dAt)z) ANwp — / Tr (A} exp(—(csAg)Q)) Awh | =

t—0s—00
I\Ts TINTY
lim / tr (A exp(—(64:)%) Aw — / tr (A} exp(—((SA,’f)Q)) A | =
t—0

M~ M(0) M'~M'(0)
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[ 4sDe) nw— [asDp) A = << [ As8(De), [ 4s(Dr) ,<wT,w'T/>>.
K<

K’ F F’

As above, limy_,q tr (At exp(f(éAt)Q)) = AS(Dp), uniformly pointwise on M, and we

have the same for Aj. As we are integrating over compact subsets, we may interchange

the lim;_,¢ with the integrations.

For lim;_,1, note that the operators have propagations bounded by c4+/8(t)/a(t) for
some c4 € RT. As they are ® compatible, we may assume that the two integrands agree

on Tp,(1—-1 and TC’A(l_t

)1 Thus,

lim lim /Tr (Ayexp(—(6A4)?) Awp — / Tr (4] exp(—(5A;)2)) Awp | =

t—1 s—o0
T\T, T'\T;
. _ 2 _ / _ 2 /
%1_13 / Tr (A; exp(—(64¢)?) Awr / Tr (A} exp(—(54;) )) A Wi
INT,  (1-p—1 T/\TCIA(lft)_l

Since the Schwartz kernel of QcA;Q. exp (—(5A¢)?) — 0 pointwise exponentially as t —
1, the fact that wr is bounded, and the assumption that M has sub-exponential growth,

give that

lim / TI'(QeAtQE exp (—(5At)2)) ANwr | = 0,

t—1
Ty (-1

and similarly for QL A;Q’.. Thus we may ignore those terms.

Next, we have that for ¢ near 1, a multiple of / tr (]{JP[O’E)) dominates

M

|| /tr(kp[o,e)AtP[o,e)exp(—(5At)2))||'
M

But this latter equals H/tr(kP[O,E)Atp[olE)exp(_((;At)2)p[0,€))H, since /tr = //tr =
M M T F

/ Tr, and Tr is a trace. Thus, we need only show that a multiple of
T

tr (kp[o’é) (7, E)) dominates || tr (kP[O,E)AtP[Oye) exp(—(54¢)2)Po.o) (T, E)) [].
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This is due to the fact that, for a smoothing operator A, tr(ka((Z,Z)) = >, (A(7.), 7).

Y,

Here v; is an orthonormal basis of the fiber over the point 7, and 5fi is the Dirac delta
section of the bundle supported at Z. Furthermore, everything is well defined on bounded
geometry manifolds. See, for example, [24] for details of such arguments. As the operators
we are concerned with are bounded leafwise smoothing, we have,

[{Ppo,e)AtPro ¢y exp (—(64¢)?) Plo,e) (62 ), 62 )]
= ||{A¢Pjo,¢) exp (—(6A¢)?) Ppo,e) (8%.), Pro,ey (02))]| <
|A¢Po.ey exp (—(84:)%) ||| Pioey (2> = [|AsPlo,e) exp (—(54¢)%) || {(Ppo,e) (07,), 63 ).

Summing over ¢, gives the result.

The fact that ||w]|| is bounded and the assumption that / r (Pp,e) dz < oo, imply
M

that

/ tr (Powo) llwl| dz < oo.
M

Thus

/ x(Po.o AP exp (~(04)2) (7)) Awll de < oo,

so the integral /tr (P[O,E)AtP[O’E) exp (—(6At)2)) A w converges. Notice that
i

/tr (P[O,G)Atp[o,e) exp (—((514,5)2)) ANw = /Tr (P[o,e)AtP[o,e) exp (—(5At)2)) A wr.

M T

This fact, the fact that we can ignore Q.A;Q. exp (7(5At)2), and the Dominated Con-
vergence Theorem imply,

lim / Tr(At exp (—(5At)2)> N wr

t—1

TNTeya-p—1

t—1

T\TCA(l—t)*l

}E/TI(P[07E)AtP[O,e) €xp (_(5At)2)) Awr
T

= lim / Tr (P[O,e)AtP[O,e) exp (—(514,5)2)) ANwp =

= /hm TT(P[O,E)AtP[O,e) exXp (—((5At)2)) N wr,

t—1
T
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and similarly for A}. The proof of Theorem 4.2 in [5] shows that, as above, under our
conditions on the Novikov-Shubin invariants in Theorem 4.6,

th_rﬁ Tr (At exp (—((5At)2)) ANwp = TI“(ﬂ'iPo exp (—(6(7TiP0))2)> A wr,

and similarly for A}. So,

th_rﬁ / Tr(At exp (—(5At)2)) A wp — / Tr(A; exp (—(6A;)2)> AN | =
T\TcAu t)—1 T/\TC{A(kt)*l
/Tr(wiPOeXp (—(5(7riP0))2)) Awp — /Tr(w’iP(’)eXp (—(5(7r’iP(’)))2)) AW, =
T T/

((cha(Pp), cha(Fy)), (wr, wy))-

That is, (chInd,(D, D"), [wr, wi]) = {(che(Po), che (P)), (wr, wh)). So we have proven
Theorem 4.6.

Remark 5.7. Note that if M, so also M’, grows exponentially, there are constants cg, cps €
R*, so that vol(M;) < coe™*. This follows from the Bishop-Gromov inequality. Thus, if
we used Lemma 5.6 as above and integrated over M ~ M,_ JBO a We would get an
estimate of the form,

(Cpe=1/610(0) 4 Le=€B(0)/2) g cenreay/BO/aT0),
For the proof to work, we need this to — 0 as t — 1. Now /5(¢)/a(t) =1/a(t),

as t — 1. Thus the two terms must — 0 individually. This only happens 1f cypca <

min(e?/2, 5;). That is, the exponential growth is not too robust.

6. Invertible near infinity operators
In this section, we assume that (M, F) is as in the first two paragraphs of Section 2.
6.1. Invertibility near infinity

Our new assumption here is that the zero-th order contribution R% in the Bochner
formula defined below is strictly positive on M near infinity. As RE is locally defined,
this implies that the same for R%

For the leafwise Dirac operator Dp = (D), the canonical operator RE on sections
of Ey|r is given by

Z J)Ecl,x (‘P)

l\?l»—~
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where RP is the curvature operator of the Hermitian connection V¥ on Ewylr,
X1,..., X, is a local oriented orthonormal basis of T'L, and p(X;) is the Clifford action
of X;. Note that RE is well defined, smooth, and that it is globally bounded because
of the assumption of bounded geometry. The operators Dy, and RE are related by the
general leafwise Bochner Identity, [27]

D} = (VEEywEhE + RE (6.1)

As we work on G rather than M, D = r*(Dp) also satisfies Equation 6.1, which, being
local, is the same, namely, D> = V*V + r*(RE). Note that in general, if RE is
strictly positive near infinity, r*(RE) is not, due to the fact that r is not a proper map
in general. However, 7*(RE) is G-invariant strictly positive near infinity off some G-
compact subspace, in particular when restricted to M C G, since it coincides with RE
there.

We have the following result from of [8]. Note that it does not need P to be
transversely smooth. It does need it to be transversely measurable, which it is by Lemma
4.10 of [8].

Theorem 6.2. (Theorem 5.2 of [8]) Assume that F admits a holonomy invariant trans-
verse measure A. Suppose Rg 1s strictly positive near infinity. In particular, we may
assume that ko = sup{rx € R|RE—k1> 0 on MKy} is positive. Then, for 0 < e < ko,

/ tr(Pyo (T, 7)) depdA < (:”0_*”“1)) / tr(Pyo.q(Z, 7)) dzpdA < oo,
Rg — €
M Ky

where k1 = sup{x € R|RE — k1 >0 on M}.

Note that if F' is Riemannian, it does admit holonomy invariant transverse measures,
and we can insure that dz is of the form dxpdA.

Proof. The proof of Theorem 5.2 in [8] works equally well here, mutatis mutandis. The
changes in notation needed are

5 o -
Dy — D, kp, ,(z,2) = kp, ,(T,7), L — Ly, 01, — 04, /—> /,
L i,
and soon. O

Proposition 5.5 in [8] still holds here, namely the following,.

Proposition 6.3. Suppose the curvature operator Rg is strictly positive on M, that is
k1 >0, so RE > k1l on M. Then for 0 < e < kK1, P =0.
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The relationship with the index bundle is not insured in general, [6], and one needs
to impose additional spectral assumptions. We have, as in [8], the following immediate
corollaries of Theorems 4.3, 4.6 and 6.2 which relate the pairings there to pairings with
the index bundles.

Theorem 6.4. Suppose that (M, F,Kpr) and (M', F',Kyp) are bounded geometry foli-
ations which are identified outside the compact subspaces Ky and Ky as before and
let (w,w’) be a @-compatible pair of closed holonomy invariant forms of degree £ < q.
Assume the following:

e M, and so also M', has sub-exponential growth, and F and F' are Riemannian;

o the leafwise operators Py, Py, Py, and P(/o,e) (for € sufficiently small) are trans-
versely smooth;

o NS(D) and NS(D') are greater than (;

. Rg, so also Rg:, is strictly positive near infinity in M and M’ respectively.

Then

( / AS(Dp), / AS(Dp) | [wr wip]) = ((ch(Po), ch(P), (wr. ).

F F

Recall that (chy(Pp),chy(P)) is not an element of A%(M/F,M'/F’;¢) in general.
Since AS(Dp) and AS(Dp) are ¢ compatible, AS(Dp) A w and AS(D%/) A w are ¢
compatible, say off the compact subsets K and K’, and then we have

( Z AS(Dr), [ AS(De)| forwi)) = [ ASDR) A — [ ASDe) AW

P © R
For a single foliated manifold we have the following, compare with [20].

Theorem 6.5. Suppose that E and E' are two Clifford bundles over the foliated manifold
(M, F), which are isomorphic off the compact subset ICps, with associated Dirac operators
D and D’'. Let w be a bounded closed holonomy invariant transverse form (or current)
of degree { < q. Suppose that

e M has sub-exponential growth, and F is Riemannian;

o the leafwise operators Py, Py, Py, and P(/o,e) (for € sufficiently small) are trans-
versely smooth;

o min(NS(D),NS(D")) is greater than {;

o RE, and hence also Rg,, is strictly positive near infinity.
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Then, since ch(E) = ch(E") off K,

(ch(Ind, (D, D")), [wr,wr]) = /(AS(DF)(ch(E) —ch(E)) Aw
K

= ((ch(Ry), ch(Fy)), (wr, wr))-

Remark 6.6. Note that if F; is a leafwise almost flat bundle (actually a K-theory class)
on M, then we may twist the operators D and D’ by E; to get the operators Dg, and
D', . Uniform positivity near infinity is preserved when this is done, so we have the
extension of Theorem 6.5 to Dg, and D', . Theorem 6.4 also extends in this way if we
have leafwise almost flat bundles E; — M and E] — M’ which are isomorphic near
infinity.

6.2. Reflective foliations

We now relate our definition of the relative index to the cut-and-paste definition
considered in Section 4 of [20]. For this paper to be self-contained, we paraphrase from
[8]. For simplicity, we assume that w and w’ are ¢ compatible off Cp; and K,

We say that (M, F,Kys) as above is reflective if there exists a compact submanifold
H C M such that

Ky € H and OH is transverse to F.

So F” is also reflective with corresponding H'. Then there is § > 0, and a neighborhood
of OH which is diffeomorphic to 9H x [—§, ], and so that F restricted to OH X [—4, d]
has leaves of the form (L N OH) x [—4,0]. We may assume that the foliation preserving
diffeomorphism ¢ extends to H x [—6, 0], and that ¢(0H x [—4,]) is diffeomorphic to
OH' x [—0,4], and that it has the same properties as 0H x [—d,d]. Then we may form
the compact foliated manifold

M = Hu; H,

where @ : OH x [—0,8] — OH' x [—4,4] is given by @(z,s) = (p(x),—s). We change
the orientation of F’ to the opposite of what it was originally. The resulting foliation
F Uz F' is denoted F. Denote by 7 : dH x [—8,8] — OH the projection and note that
E|8H><[—5,6] ~ 7T*(E|3H), and TF|8H><[—6,6} ~ W*(TF|3H) (Note that dlm(TF ‘BH) =
dim(TF), not dim(TF)—1 = dim F |sz.) We may assume that V and Dp are preserved
under the maps (z,s) = (v, —s) and E ) — E(; _s). This implies that Dp and D%,
are identified under the gluing map. In addition, w and «w’ fit together, giving @. This
construction is the exact translation of the Gromov-Lawson construction to foliations.

Finally, denote the leafwise operator on F by D 7 (and its associated projections by
ﬁo and ﬁ(O,e))~ Then we have the following extension of Alain Connes’ celebrated index
theorem, see [13], which is very useful in Section 7.
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Theorem 6.7. With the above notations, suppose that F (and so also F') is reflective, but
not necessarily Riemannian. Suppose further that (C,C") is a compatible near infinity
pair of closed holonomy invariant currents, with associated current C. Then

(ch(Ind, (D, D), (C,C")) = {(ch(Inda(Dy)), C).

Proof. We prove the case where (C,C") = [wr,w}], since it is notationally simpler. The
general case is left to the reader. Theorems 4.2 and 5.5 give

(ch(Ind, (D, D")), [wr,wp]) = /AS(DF)/\w— / AS(Dp/) Aw'

’
K Koy

since the differential forms AS(Dp) Aw and AS(D%,) Aw’ are ¢ compatible off Ky and
K?\/[/ . NeXt,

/AS(DF)/\w— / AS(Dyp ) AW = /AS DF)/\W_/AS(DF’) =
Kar Ky

H/
/As@ﬁ)w _

M

,07) = (ch(Inda(Dp)), 7).

51>§
>
x
b>

The last equality is from Theorem 6.2 of [4] applied to the closed foliated manifold
(M, F). The others are obvious. 0O

Note that, since the integrands AS(Dp) A w and AS(D%,) Aw' are ¢ compatible off
K and K, this result is actually independent of the choice of the transverse compact
hypersurface 9H and for simplicity we may assume that H = KCy;.

Theorem 6.8. Suppose that (M, F,D), (M’ F’ D’) are as in Theorem 6.7. Suppose fur-
thermore that F is Riemannian, that PO and PO ) are transversely smooth, and the
Novikov-Shubin invariants of DF are greater than £/2, for some 0 < £ < q. Then for
any £ homogeneous @-compatible pair (w,w’) as before,

(ch(Inda (D, D)), [wr, wi]) = ((ch(Py), B7)-

Moreover, if we impose on (M, F,D) and (M', F', D") the assumptions of Theorem 4.6,
then we have

(ch(Py), ch(Py)), (wr,wip)) = ((ch(Fo),B7)-

This is a consequence of Theorem 6.7 using Theorem 4.1 of [5] to deduce the second
equality, with ((ch(Fp),@5) being well defined under our assumptions.
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Remark 6.9. This result raises some interesting questions.

1. Suppose that Rp, so also R, is strictly positive near infinity, then (ch(FPp),wr) and
(ch(PY)), wh) exist. Under what more general conditions than those in Theorems 4.6
and 6.8 does

(ch(Po),wr) — (ch(Pp),wi) = (ch(Py), B7)?

2. In general, suppose that (ch(FPp),wr) — (ch(FP)),wr,) — (ch(?o),®f> # 0. What can
be said about the geometry or topology of (M, F, D), (M’, F',D"), and (M, F,D)?
3. How are the Novikov-Shubin invariants of D and D’ related to those of D?

The previous construction extends to the following more general situation to yield the
so called higher ® relative index theorem, see again [20]. In particular, we assume that
(M, F) and (M', F') satisfy the hypotheses of Theorem 4.6, with the following changes.
In particular, M\ K = ViUV and M'\ K’ = V] UV, where the unions are disjoint. For
this case, ® = (&, ¢) is a bundle morphism from E — Vg to E' — VJ as in Section 2, our
good covers U and U’ are compatible on Vg and VY, and w and w’ are ¢ compatible on
Ve and V. We assume that F' is transverse to Vg, so F” is transverse to OVy. Finally,
we assume that RE and RE, are strictly positive off £ and K', so we do not need the
assumptions on the integrals being finite.

Next, consider as above the manifold M = (M ~ Va) Ug (M’ \Vy), with the foliation

F = (Fluve) Ug (F' vy,

where the orientation on ﬁ|M\V¢ is the one on F', and that on ﬁ|M’\V<{, is the opposite
of the one on F’. We also have the bundle £ — M induced by E and E’, the leafwise
operator D 7 induced by Dp and D%/, and the differential form & induced by w and w’.

Because of the positivity off compact subsets, all three operators have finite indices,
and we have the following.

Theorem 6.10. [The higher foliated ®-index formula/

<ch(Inda(ﬁ)),@f> = {(ch(Ind,(D)),wr) — {(ch(Indy(D")),ws).

The proof follows from our results here, by easily adapting the proof of Theorem 4.35
of [20].
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7. Applications
7.1. Leafwise PSC and the higher Gromov-Lawson invariant

We further extend the Gromov-Lawson construction in [20], Section 3, see also [27],
IV.7, to get an invariant for the space of PSC metrics on a foliation F' whose tangent
bundle admits a spin structure. We calculate this invariant for a large collection of spin
foliations whose Haefliger A genus is zero, so the results of [8] do not apply. Using
the higher index results here, we show that the space of PSC metrics on each of these
foliations has infinitely many path connected components, thus verifying our claims that
higher order index theorems allow for the extension of results for manifolds with non-
zero A genus to arbitrary manifolds, and that the higher order terms of the A genus also
carry geometric information.

For simplicity, we assume that M is compact. Denote by M the space of all smooth
metrics on F' with the C* topology, and by M7, C M the subspace of metrics with
PSC along the leaves.

Scalar curvature and the so called Atiyah-Singer operator are intimately related.
Recall that Sp is the bundle of spinors along the leaves of F, with the leafwise spin
connection V. The leafwise Atiyah-Singer operator is the leafwise spin Dirac operator
D% = (D¢), which acts on Sp, as usual, by

14
i=1

where X7,..., X, is a local oriented orthonormal basis of T'L, and p(X;) is the Clifford
action of X; on the bundle Sg|L. Denote by & the leafwise scalar curvature of F', that is

p

K= — Z (Rx, x,;(Xi), X;),

i,j=1

where R is the curvature operator associated to the metric on the leaves of F. In this
case the Bochner Identity, Equation 6.1, is quite simple, see [27], namely

(D$)? = (VIy*vE + i/{. (7.1)
Consider the foliation Fg on Mr = M x R with leaves Lg = L x R and with the
leafwise volume form dxp x dt. If U is a good cover of M, Ur = {(U,T}*) = (U; x (3n—
2,3n+2),T;)|(U;,T;) € U,n € Z} is a good cover of Mg. Denote by 7 : Mg — M the
projection. Suppose that go, g1 € M{., and (g;)¢cpo,1] is a smooth family in M from go
to g1. On Fg, set G = gg +dt? for t <0, G = g; + dt? for t > 1, and G = g; + dt? for
0<t<l
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The leafwise spin Dirac operator D}S; extends to the leafwise spin Dirac operator Dy
on Fr. Following Gromov-Lawson, [20], Equation (3.13), we set

i(go,gl> :Ch(Inda(DR>) < H:(M]R/FR> (72)

Theorem 7.3. i(go, g1) depends only on go and ¢1. If i(g0,91) # O, then go and g1 are
not in the same path connected component of M.

Proof. Suppose that ¢g; and g; are two smooth families of metrics in M from g¢ to g1,
with associated metrics G and G and associated operators Dg and Dg. A byproduct of

Theorem 4.2 is that i(go, g1) = / ﬁ(TFR7 G) |, where A\(TFR, G) is the Atiyah-Singer
R

characteristic differential form, the so-called A-hat form of F', on Mg associated to the
metric G, and similarly for G. Thus we have

~

i(g0,91)(G) — (g0, 1)(C) = / (A(TF.G) - A(TFy.0))
e u

_ /(E(TFR,G)—E(TFR@) ,

Fir

where Fp is the foliation on |J; U?. The forms A\(TFR,G) and /T(TFR,@) are locally
computable in terms of their associated curvatures. Thus, off the compact subset M x
[0, 1], they agree, which justifies the second equality. By abuse of notation, we may write

/ (A(TFg.G) — A(TFg,G)) = / (A(TF.G) - A(TFr.C)).

FQ Fx[0,1]

Since the cohomology classes of the two forms are the same, /Al(TFR, G) — A\(TFR, é)
is an exact form dp;xgr WY, which is locally computable in terms of the curvatures and
connections. In particular, ¥ = 0 on the closure of open sets where the connections agree.
So off M x (0,1), W is zero, since the connections agree there. Thus

[ArFe.6) - Arre.6) = [ dyv = [ v
FQ Fx[0,1] Fx[0,1]
and i(go, 91)(G) — i(g0,91)(G) =0 in H: (Mg /Fg).
For the second part, assume that gg and g; are in the same path connected component
of ML,

replacing g; with a suitable reparametrization, a so-called “warped product” metric, G

and that gy, is a smooth family of metrics in M7, from go to g1. Then, after
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restricted to each leaf of Fgr will have PSC, see [19], p.184, and since the family of metrics
is smooth, it is strictly positive. Then, Proposition 6.3 gives that P[]1§ q= 0, for some
positive €, so the Novikov -Shubin invariants are infinite and Remark 4.4 (1) gives that

i(g0,g1) = 0. O

Remark 7.4. Theorem 7.3 remains true if we consider concordance classes of PSC metrics,
which a priori is stronger. Recall that leafwise metrics are concordant if there is a metric
G on TFR so that it agrees with gy x dt? near —oco and with g; x dt?> near +o0. The
conclusion is that if i(go,91) # 0, then go and g; are not in the same concordance class
of metrics in MY,. The proof being essentially the same.

Remark 7.5. We could also extend this theory to concordance classes of leafwise flat con-
nections V on an auxiliary bundle E. The invariant would become i((go, Vo), (g1, V1))-
See [3]. The theorem would then be that if gy and g; are concordant, and V, and V;
can be joined by leafwise flat connections, then i((go, Vo), (g1, V1)) = 0.

Next, we have a corollary of Theorem 6.10.

Corollary 7.6. Suppose go, 91,92 € MY,. Then

(90, 91) +(91,92) = i(g0,92), so i(go,91)+i(g1,92) +i(g2,90) = 0.

Proof. In the notation of Theorem 6.10, take (M, F), (M’,F') and (1\7, F) to be
(Mg, Fr), K=K' =M x[0,1}, Vo = Vg = M x (—00,0), and V; = V] = M x (1,00).
To compute i(g;, g;) take

Gi,j =g; + dt2 for t € (—OO,O}7 and Gi,j =g;+ dtQ for t € [1,00)
For the first, we have

i(90, 91) — i(9o, 92) = ch(Inda(Dr(Go,1))) — ch(Inda(Dr(Go,2))) =
ch(Indy(Dg(G2,1)) = i(g2,91) = —i(91, g2)-

The second equality is from Theorem 6.10, where DF = Dy (G21), D¥ = Dr(Go 1), and
DE = Dr(Gy2).
The second equation is then obvious, as i(go, g2) = —i(g92,90). O

Now suppose that M is the boundary of a compact manifold W with a spin foliation
F' which is transverse to M, and which restricts to F' there. Extend F as above to
W Up (M % [0,00)). Given a metric g of PSC on F, extend it to a complete leafwise

metric g on F' by making it g + dt? on M x [—¢,o0), where M x [—¢,0] is a collar
neighborhood of M C W, and extending it arbitrarily over the rest of the interior of W.
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Definition 7.7. i(g, W) = ch(Ind,(Dp)).

Note that Theorem 4.2 and the proof of Theorem 7.3, show that i(g, W) does not
depend on the extension of g over W. It does however depend on W in general.
In this situation, we have the following two corollaries of Theorem 4.2.

Corollary 7.8. Suppose that go, g1 € MZ.. Then
i(gO7gl) = Z(ghW) - i(gOaW)7
as Haefliger classes. In addition, if go has PSC, then i(go, W) = 0.

The reader may wonder how the classes in the first equality can be compared, since
they are on different manifolds. This is explained below.

Proof. Consider the following

o (Mg, Fr) with the metric Gy 1 above, giving i(go, g1).

o My =WyUp (M x [0,00)) with the metric go + dt? on M x [0, 00), and the metric
go on Wy = W. Take the opposite orientation on My by reversing the orientations
on [0,00) and Wy, so this gives —i(go, W).

o My =Wy Uy (M x [0,00)) with the metric Go,1 restricted to M x [0,00), and the
metric go on Wi = W. As the metric on M x [1,00) is g1 x dt?, this gives i(g1, W).

The meaning of the first equality is that representatives of the classes on My U My ~
Wo UW; equal the representative on Mg, while what remains on Wy and Wi cancel. It
is useful to have a picture of the situation. The arrows indicate the orientations.

i(go,91) 1 Mg go + dt? gt g1 + dt?
— = —
M x {0} M x {1}
i(g1, W) : M g Wi gt g1 + dt?
— = —
—i(go, W) : M, g W go + dt?
i(go, W) 0 90, Wo o+

We may use the A-forms associated to the terms, since they are arbitrarily close to

differential forms in the Haefliger classes. We indicate them by A(Mg), A(My), and
A(Ml) Then,

o A(M)) restricted to My ~ Wy equals A(Mg) restricted to M x (0, 00);
o A(My) restricted to My ~ Wy equals A(Mp) restricted to M x (—oo,0];
A(Mp) restricted to Wy cancels A(M;) restricted to Wi.
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For the second statement, Proposition 6.3 gives that there is ¢ > 0 so that Py = 0.
Then Theorem 4.5 gives i(go, W) =0. O

Corollary 7.9. Suppose that gy has PSC, and that g1 extends to g1 with PSC over a
compact manifold W1 with the spin foliation Fy extending F'. Set

X(O,l) = WUum (M X [0, 1]) Unr Wl

with the metric @(071) which is go on W, Go1 on M x [0,1] and g1 on /Wl. Denote the
leafwise operator on the foliation Fo 1y of X(0,1) by D(o,1)- Then

i(g0,91) = ch(Ind, (Do 1)) = /E(TF(OJ)).

Fo,1)

Proof. For i(go,g1) = ch(Ind,(D(,1))), set M, = Wi Uy (M % [0,00)) with the metric
g1 +dt? on M x [0,00), and the metric g; on /V[71, so the metric has PSC everywhere and
i(g1, W1) = 0. Then, we have,

i(g0. 91) = i(g1, W) —i(go, W) = i(g1, W) = (g1, W) — i(g1, W1) = ch(Ind,(D(o,1))-

The first three equalities are obvious. For the last, proceed as in the first part, noting
that

. E(Ml) restricted to Wy Uy (M x [0, 1]) equals E(X(O’l)) restricted to W Uy (M x
[0,1]);

. —A(Ml) restricted to W1 cancels A(X(o 1)) restricted to Wl,

. —A(Ml) restricted to M; ~. W, cancels A(Ml) restricted to My ~ (M7 x (1,00)).

Finally, the fact that ch(Inda(Do,1))) = /E(TF(O,U) is a result from [4]. O

Fo,1)

7.2. Some erxamples

To finish, we construct a large collection of spin foliations whose space of leafwise PSC
metrics has infinitely many path connected components.
Suppose we have the following data.

« A closed foliated manifold (M, F), with F spin and / A(TF)#0in HY(M/F).
F
o A closed manifold S and a family (g;) of PSC metrics on it, and compact spin
manifolds X; with boundary S and metric §;, which is g; x d¢? in a neighborhood of
S, and g; also has PSC. Set
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Xig) = Xi U (S x [0, 1]) U Xj,

where the metric on S x [0,1] is g; x dt?, and g; is a path of metrics from g; to g;.
Assume further that i(g;, g;) is non-zero.

Proposition 7.10. The foliated manifold (M x S, TF x T'S) has a family of PSC metrics
(9:), so that for any i # j, g; and g; do not belong to the same path component of the
space of PSC metrics on TF x T'S.

Proof. Since M is compact, F admits a metric g of bounded scalar curvature. Set g; =
g X ¢igi, where ¢; € (0,00) is such that g; has PSC. For the manifold M x X(; ;), with
the foliation F' x X(; jy, Corollary 7.9 gives

i(gi,95) = / A(TF x TX(i )
FxX,j

If g; and g; were in the same path component of the space of PSC metrics on T'F x T'S,
then we would have i(g;, g;) = 0. However, if ¢ # j, then

/ A(TF xTX( ) = / A\(TF)A\(TX(i,j)):/A\(TF) /E(TX@-,]-))

FXxX,j) FXxX i) F X (i.4)

—i(ag) [ ATF) £0. ©

Here are examples of this type.

Example 7.11. We adapt Example 1 of [22]. In particular, let G = SLsR x --- x SLyR
(q copies) and K = SOy x --- x SO (q copies). G acts naturally on R?? \ {0} and is
well known to contain subgroups I'" with N = I'\G/K compact, (in fact a product of ¢
surfaces of higher genus). Set

M =T\G xg ((R?*? . {0})/Z) ~T\G xx (S%~1 x S,

where n € Z acts on R?7 ~ {0} by n-z = e"2.

M has two transverse foliations, F' which is given by the fibers S22 ! x S! of the
fibration M — N, and a transverse foliation coming from the foliation 7 of Example
1 of [22]. More precisely, 7 is defined on the vector bundle I'\G x x R??, and the zero
section is a leaf of it. In addition, the action of Z preserves 7, fixing the zero section, so
it descends to a foliation on M, also denoted 7.

We work with F', noting that TF is orientable and spin since R?? — {0} has these
structures and the actions of K and Z preserve them. It also happens to admit a met-
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ric with PSC, namely the product of the standard metrics on S??~! and S!, which is
preserved by the action of K. The following proposition is proven in the appendix.

Proposition 7.12. /E(TF) is a nowhere zero 2q form on N. In particular, there is a

F
non-zero constant Cy so that ///Al(TF) = Cyvol(N).
N F

Thus, /A\(TF) # 0 in HY(M/F). Note that this also shows that the Haefliger A

F
0

genus of TF, i.e. /E(TF) € HY(M/F), is zero, which is why we cannot use the

F
results of [8] here.

In [11], Carr constructs examples of “exotic” PSC metrics g;, i € Z, on S*~1 for
k > 1, and compact Riemannian 4k dimensional spin manifolds X; with boundary S**—1,
so that the metric g; on X; is g; x dt? in a neighborhood of S**~! and g, also has PSC.
Set

Xaj = XiUu(S™ ' x[0,1)) U X;,

where the metric on S*~1 x [0,1] is g¢ x dt?, and g; is a path of metrics from g; to
g;. These examples have the property that i(g;,g;) # 0. Thus we have all the elements
required to apply Proposition 7.10

Remark 7.13. Note that the calculations in the examples in [22] can be used to provide
examples associated to the groups G = SLg,, R x -+ x SLy, R, and K = SO0y, X -+ X
SO0s,,., and G = SLoy, R X -+ X SLa,, R X R and K = SOa;,, X -+ X SOa,, X Z. We
leave the details and further extensions to the reader.

The next example is an easy corollary of the Kreck-Stolz result from [26][Corollary
2.15].

Proposition 7.14. Suppose that (M, F) is a closed foliated manifold with F spin. Let Y be
a closed connected spin manifold of dimension 4k —1 > 3 with vanishing real Pontrjagin
classes and such that HY(Y;Z/2) = 0. If Y admits a PSC metric, then the foliated
manifold (M x Y, TF x TY) admits a sequence (g;) of leafwise PSC metrics such that
forany i # j, g, and g; are not in the same path component of PSC metrics on TF xTY .

Notice that if Y is for instance simply connected, then it always admits a metric of
PSC by [31].
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Proof. In [26], Kreck and Stolz produce an infinite sequence g; of PSC metrics on Y such
that for any 7 # j, the Gromov-Lawson invariant i¢r,(gi, g;) # 0. Note that igr(g:, g5) is
the difference of the dimensions of the positive and negative parts of the kernel of Dg on
the manifold Yg. Thus, there is a non-trivial L? element ¢ in the kernel of Dg. On the
foliated manifold (M x Y, TF x TY') there is the sequence of PSC metrics (g;), where g,
is as in Proposition 7.10. For i # j, these metrics are not in the same path component
of leafwise PSC metrics. For if they were, then the foliation TF x TYg, would have PSC
everywhere. So, by Proposition 6.3, there would not be any non-trivial L? elements in
the kernel of Dg. But this is patently false as (0, () is such a non-trivial L? element. O

We finish with some cogent comments by the referee. It would be interesting to know if,
in any of the examples above, the restrictions of the g; to each leaf are pairwise isotopic.
This would rule out the possibility of showing non-isotopy by restricting to a single leaf
and applying results from the non-foliation case. A particularly interesting case is that
when ¢ = 2 in Example 7.11 where the fibers are S? x S'. Very little is known about
the topology of PSC metrics on 4-manifolds. It is an open question whether the space of
PSC metrics on S* is path connected and the status is likely the same on S® x S!.

Appendix A. Proof of Proposition 7.12

We follow the proof of Theorem 5.4 in [22]. Denote by (21, Y1, .., Zq, Yq) the coordinates
on R??. Choose nonzero numbers Ay, ...A; € R, and set

q
Xx =Y Ni(wi0/0xi + 0/ Oyi).

i=1

This vector field has an isolated singularity at the origin and it commutes with the actions
of K and Z on R%4 ~ {0}. Thus it induces a nowhere zero vector field also denoted X
on the bundle M.

Denote by w) the one-form on R?? \ {0} defined by

q
Ai
wy =Y 7 (Tidi + yidys).

Note carefully that this is different from the wy of [22]. This change is necessary so that
wy is invariant under the action of Z. Note also that dwy = 0 still holds. The actions of
K and Z on R?7 < {0} preserve wy, so it induces a one-form wy on M.

Let S be the sphere bundle in M = I\G x i ((R?? . {0})) given by the image of

q

{(9, (@1, 91, -, 2q,y4)) € G x (qu ~{0}) | Z)‘Z(mf + yzQ) =1}

i=1

S is invariant under I and K so it is well defined. Set
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So=8=0-5, and S;=1-5.

Note that the condition on Sy is > i A\;(2? + y7) = €2, so its radius is e. Then we may
write,

M = T\G xx (8% x [L, ]},

where we identify the boundary components, Sy and S, on the right, and we may do
our computations, as in [22], using the coordinates on G x S29=1 x (1,e).
Denote by @ the unique basic connection (for the foliation 7!) on T(S?¢~1 x (1,e)),

which is the normal bundle of 7, whose covariant derivative V satisfies, for all Y €
T(s*1 x (1,¢)),

Vya/axz = OJ,\(Y)[X)\,a/aLEi], and Vya/(“)yl = w,\(Y)[X,\,a/ayl]

The proof in [22] works just as well here to show that 6 is well defined.

The computation of the curvature Q of V proceeds just as in [22]. In particular, we
may assume that we have a neighborhood U in N whose inverse image in M is of the
form U x (S?77! x (1,¢€)), and coordinates on it, so that the local form of Q with respect
to the local basis 9/9z1,0/dy1, ...0/0z,,0/dy, of T(S?*1=1 x (1,e)), is given by

2571 = Q5 = Xd(X9),
and all other terms are zero. Here, for i =1, ..., q,

L] )\6 = )\1(51+~"+)\q5q;
o 0 = myiwi + 5 (27 — yP)vs
* W1,V1, .. Wy, Vg i & basis of the one-forms on U with dw; = —w; Ay; and dry; = 0.

2q

~ /2
Recall that A(&q,...,&2q) = H m We want to compute
=1 J

/E(T(s%—l x S1)) = / A(T(S%~1 x 81)) = / A(Q).
F S24-1x 51 S24-1x(1,€)

As (d6;)3 = 0 and (d6;)? = 2(x? + y;)?dx; A dy; A w; A7, the only term of A(Q) which
will be non-zero when integrated over F is, just as in [22],

Azq(9) = Azg(A1, A1, oo Ags Ag)(d(AG))%

q
= Aog(A1, A1, s A 'H (N2 (22 + y?)dxi A dy; A w; Ai,
i=1
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where A\Qq(gl, ...;§2¢) is the term in 121\(61, ..., €2q) of degree 2¢. Thus,

A\2q(9) =
§20-Tx(1,¢)
R q q
Azq(A1, A1, Ags Ag) | (29)! / [1O? @7 +y2)dwi Adys) | [[(wi Aw) =
1 =1

52a-Tx(1,e) =

7Tq(€4q — 1)A\zq(>\1,/\1,...,)\q,/\q) 4
wi N\ Yi),
(A1 A2 H( i)

i=1

by Lemma 5.8 of [22], which is a nowhere zero 2¢q form on N. Note that A\gq(/\l, A1y Ag,
A,) is a non-zero constant times (A; - -- A\;)%. Thus, there is a non-zero constant C, so
that

AQ) = ]J F/ A(TF) = C, vol(N).

N S2a-1x(1,e)
Data availability
No data was used for the research described in the article.
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